Longitudinal data analysis with covariates measurement error

Loading...
Thumbnail Image
Date
2016
Authors
Hoque, Md. Erfanul
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Longitudinal data occur frequently in medical studies and covariates measured by error are typical features of such data. Generalized linear mixed models (GLMMs) are commonly used to analyse longitudinal data. It is typically assumed that the random effects covariance matrix is constant across the subject (and among subjects) in these models. In many situations, however, this correlation structure may differ among subjects and ignoring this heterogeneity can cause the biased estimates of model parameters. In this thesis, following Lee et al. (2012), we propose an approach to properly model the random effects covariance matrix based on covariates in the class of GLMMs where we also have covariates measured by error. The resulting parameters from this decomposition have a sensible interpretation and can easily be modelled without the concern of positive definiteness of the resulting estimator. The performance of the proposed approach is evaluated through simulation studies which show that the proposed method performs very well in terms biases and mean square errors as well as coverage rates. The proposed method is also analysed using a data from Manitoba Follow-up Study.
Description
Keywords
Cholesky decomposition, Longitudinal data, Measurement error, Monte Carlo Expectation-maximization algorithm, Random effects, Generalized Linear Mixed Model
Citation