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Abstract

Longitudinal data occur frequently in medical studies and covariates measured by

error are typical features of such data. Generalized linear mixed models (GLMMs)

are commonly used to analyse longitudinal data. It is typically assumed that

the random effects covariance matrix is constant across the subject (and among

subjects) in these models. In many situations, however, this correlation structure

may differ among subjects and ignoring this heterogeneity can cause the biased es-

timates of model parameters. In this thesis, following Lee et al. (2012), we propose

an approach to properly model the random effects covariance matrix based on co-

variates in the class of GLMMs where we also have covariates measured by error.

The resulting parameters from this decomposition have a sensible interpretation

and can easily be modelled without the concern of positive definiteness of the

resulting estimator. Performance of the proposed approach is evaluated through

simulation studies which show that the proposed method performs very well

in terms biases and mean square errors as well as coverage rates. The proposed

method is also analysed using a data from Manitoba Follow-up Study.

KEY WORDS: Cholesky decomposition, Longitudinal data, Measurement er-

ror, Monte Carlo Expectation-maximization algorithm, Random effects
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Chapter 1

Introduction

1.1 Longitudinal Studies

Longitudinal studies are very common in practice such as in health and life sci-

ence, epidemiology, medical studies, and biomedical research. A study is known

to be a longitudinal study when each individual in the study is followed over

the period of time and for each individual, data are collected at multiple point

of times. For example, blood pressure measurement of each individual may be

measured repeatedly over time, or multiple quizzes may be taken for each student

throughout the semester. Thus, the basic feature of such study is successive mea-

surements on each of a number of individuals. A major benefit of longitudinal

studies over cross-sectional studies is that one can study the changes of variable

over time in longitudinal studies while in cross-sectional one can’t.

Covariates in the longitudinal studies may be classified into two categories such as

time-dependent covariates and time-independent covariates. The variables which
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vary over time within individuals are known to be time-dependent covariates. On

the other hand, time-independent covariates are the factors which don’t changes

over time such as an individual’s gender, race and other baseline factors. The

fundamental goal in longitudinal studies is to investigate the effect of important

predictor variables on individual response over time period.

The repeated measurements on the individuals e.g. from the same family in

longitudinal studies are likely to be correlated. For example, members from

the familial ancestry are genetically connected and their health conditions are

generally correlated. Unlike the univariate case, in order to make valid infer-

ences it is most important to take care of the correlation among the repeated

measurements when analysing the data from these studies. Hence, there are

two sources of variability in longitudinal data: within-individual variation, i.e.,

the random variation among the repeated measurements with each individual;

and between-individual variation, i.e., the random variation in the data between

different individuals. Moreover, the number of measurements and measurement

times on each individual may vary individuals to individuals, i.e, the observed

data are often unbalanced. Furthermore, in longitudinal studies, there may be

early drop out on some individuals (subjects) for various reasons such as side

effects of treatment. It is also known that blood pressures are usually measured

with errors i.e, the observed values may vary from the actual (unobserved) values.

These features in longitudinal studies indicate that the observed data are often

complex or incomplete. Therefore, because of all these special characteristics

of longitudinal data, statistical methods for analysing such data need special
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attention.

1.1.1 Methods for Analysis Longitudinal Data

Many model approaches have been developed to analyse longitudinal data and all

these models can be classified into three broad categories: marginal models, tran-

sitional models, conditional models which includes random effect (mixed models).

Suppose that data contains n independent subjects. Let Yij be the response vari-

able at time point j for subject i, i = 1, 2, . . . , n, and j = 1, 2, . . . , m. Let Xij be the

covariates whose effects are of interest. Generalized Linear Model(GLM) can be

used to fit the data if the observations are independent of each others as follows

g(µij) = XT
ij β, (1.1)

where µij = E[yij|Xij], g(·) is the link function that connects µij to the linear

predictors and β is the vector of regression parameters. For continuous re-

sponses, the link function is the identity link g(µ) = µ. For binary responses,

the commonly used link functions are the logit link g(µ) = log µ
1−µ , log-log link

g(µ) = log{−log(1 − µ)}, and the probit link g(µ) = Φ−1(µ), where Φ(·) is

the cumulative distribution function of a standard normal variable. However,

GLMs are no longer an appropriate solution in the presence of within-individual

associations. In this section, we provide an overview of commonly used three

general classes of models to analyse longitudinal data.
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Marginal models

Marginal model approach has been widely used in longitudinal studies when

inference about the population average are the main focus. In this case, firstly we

model the marginal expectation of the response as a function of covariates without

conditioning on other outcomes or unobserved random components and then the

covariance structure of the response, i.e., the variance and the correlation of the

response measurements are modelled separately. Marginal models are generally

free of full parametric assumption for the joint distribution of the multivariate

responses. A set of estimating equations, called generalized estimating equations

(GEEs), introduced by Liang and Zeger (1986) are used to estimate the parameters

in marginal model where the mean parameters are of the primary interest and the

association between outcomes is considered as a nuisance feature. As a result, the

marginal mean of the responses is modelled by the GEE approach assuming a

common correlation structure across all the individuals.

Transition models

A Markov structure for the longitudinal process is assumed to model the within-

individual correlation in a transition model. The idea is to assume that the present

response observation depends on the past response observations given observed

data. The previous response can be treated as additional covariates. A transition

model of first-order Markov model for a longitudinal process may be written as

E(yij) = g(yi,j−1, xi, β),

4



where g(·) is a known link function. A class of marginalized models which specify

a conditional model for the data generation underlying process is discussed by

Zeger and Heagerty (2000). This models allow the estimation of marginal mean

parameters. Heagerty (2002) generalized the model of Azzalini (1994) to a broad

class of marginalized transition models (MTM) for the case of binary data. Chen et

al., (2009) extended Heagerty’s (2002) model for categorical data and this models

permits marginal regression analysis and allows a general pth order dependence

structure.

Mixed effects models

The mixed effects model approach assumes that the outcome is a function of

covariates with regression parameters varying from one subject to another subject.

In this case, random effects for each individual are introduced to incorporate

the within-individual correlation and between-individual variation in the data.

The measurement within the individual are correlated as each individual shares

the same random effects. The two sources of variation in longitudinal data are

specially incorporated by the mixed effects model. Thus, in addition to standard

population-average inference, a mixed effects model allows individual-specific

inference. A generalized linear mixed model (GLMM) is used which has the

following form

g(µu
ij) = XT

ij β + ZT
ijui, (1.2)

where β is the vector of fixed-effects parameters, ui is the vector of random-effects

associated with covariates Zij, and µu
ij is the conditional expected value of Yij,
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the jth measured response on the ith subject. The vector of random effects ui

has a certain distribution, say, f (ui) with variance σu. The main goal of statistical

inference is to estimate the parameters θ = (βT, σu)T, with primary interest in β

(McCulloch and Searle, 2001). In case of continuous response and identity link

function, a linear mixed model (LMM) is given by

Yij = XT
ij β + ZT

ijui + εij, (1.3)

where the random error εij is often assumed to have a normal distribution with

mean 0 and variance σε, and the random effects ui that vary between subjects are

assumed to follow a normal distribution with mean 0 and covariance matrix D(θ).

For estimating the fixed-effects parameters and the parameters associated with

random effects, the straightforward way is to use the maximum likelihood (ML)

method based on marginal distribution of the observations. However, computing

the likelihood function which involves integration over the random components

is often difficult for GLMMs as it is not in closed form in most of the cases. In

LMMs with normal variance components, some authors proposed iterative algo-

rithms for computing the ML estimates or restricted maximum likelihood (REML)

estimates (Harville, 1977; Fellner, 1986). The algorithm of Harville (1977) has been

adopted by Schall (1991) to yield approximate ML or REML estimates in GLMMs.

In standard applications e.g., the example of analysing the effect of air pollutants

on pulmonary function development in children considered by Laird and Ware

(1982), the random effects are assumed to be independent of covariates in these

models. However, it is shown by Neuhaus and McCulloch (2006) that if there
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is correlation between the random effects and one of the covariates then naively

fitting a GLMM ignoring this correlation leads to inconsistent estimators. To re-

duce the bias, the authors introduced conditional ML method by partitioning the

covariates into between- and within-individual components. Moreover, a verity

of methods have been proposed for fitting the GLMMs, including Monte-Carlo

EM (McCulloch, 1994), Laplace approximations (Liu and Pierce, 1993; Breslow

and Lin, 1995), Penalized Quasilikelihood (Breslow and Clayton, 1993), Corrected

Penalized Quasilikelihood (Lin and Breslow, 1996), data cloning (Lele et al., 2010)

and Bayesian procedures including EM-type algorithms (Stiratelli, Laird and

Ware, 1984) and Gibbs sampler (Zeger and Karim, 1991).

1.2 Measurement Error

Measurement error is a common concern in many scientific research. In case of

analysing correlated data, the effect of covariate measurement error is a serious

problem. It is known that the variables obtained from self-reported questionnaires

contain error, e.g., dietary intake, and nutritional consumption. One of the major

sources of measurement error in data is self-reported bias. It has been well estab-

lished in the literature that many covariates of medical interests, such as blood

pressure (Carrol, Ruppert, and Stefanski, 1995), urinary sodium chloride (USC)

level (Wang, Carrol, and Liang, 1996), and exposure to indoor or outdoor pollu-

tants (Tosteson, Stefanski, and Schafer, 1989) are often subject to measurement

error. In the presence of covariates measurement errors, naive estimators for the
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model parameters are often inconsistent (Fuller, 2009; Cook and Stefanski, 1994;

and Prentice, 1982).

We often need to assume an error structure to address the covariate measure-

ment errors. Let Wij be the observed covariate value for the individual i at time

point j, with possible measurement errors, and let Xij be the corresponding un-

observed true covariate value. There are two way of defining the relationship

between Xij and Wij (Carroll et al., 2006): one models the dependence of Xij on

Wij, and the other models the dependence of Wij on Xij, given the other variables.

The Classical additive measurement error model assumes that

Wij = Xij + eij,

where eij is the measurement error for individual i at time point j and independent

and identically distributed (i.i.d) with mean 0 and variance σ2
e , and are indepen-

dent of Xij. Often, eij also assume to follow a multivariate normal distribution.

The Berkson additive measurement error model (Berkson, 1950) assumes that

Xij = Wij + eij,

where eij is the measurement error for individual i at time point j and independent

and identically distributed (i.i.d) with mean 0 and variance σ2
e , and are indepen-

dent of Wij. Often, eij assume to follow a multivariate normal distribution.

The Multiplicative measurement error model is given by

Wij = Xijeij.
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One can also define,

Xij = Wijeij.

The choice of additive or multiplicative measurement error model depends on

how much variation around the mean come into the observation. This may well

come in multiplicatively or additively. Log-sacle of multiplicative model converts

to the additive model which is convenient to deal with. In this case the log of

error variable, eij, has normal distribution with mean 0 and variance σ2
e but in

multiplicative model this is not an obvious case. However, sometimes researchers

are not interested to work in log-scale.

The Structural measurement error model assumes a strong parametric assumption

about the distribution of the true covariate Xij. That means in this case Xij’s are

random variables. Structural model can be viewed as an empirical Bayes method

(Whittemore, 1989). Likelihood methods and Bayesian methods are commonly

used in this case.

On the other hand, the Functional measurement error model assumes no distri-

butional assumption on true covariates Xij, that means Xij’s are fixed constant.

Regression calibration and simulation extrapolation (SIMEX) are the most com-

mon used methods in this case.

The classical error model is the mostly used in practice. However, it is important

to note that choice of error model depends only on the data at hand. Carroll et

al. (2006) provided the following suggestions: we can use classical measurement

error model if the error-prone covariate is measured uniquely to an individual
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such as blood pressure measurements; on the other hand, if same value of the

error-prone covariate are provided to all the individuals in a group but the true

covariate value is specific to an individual, such as a person’s actual exposure

to air pollution in a city of people exposed to the same level of air pollution in

that city, then Berkson measurement error model can be used. In other words,

if the observed covariate over-estimates the true covariate, we use the classical

measurement error model, otherwise, one can use the Berkson measurement error

model.

Various types of measurement error can arise in practice. It is important to

distinguish between differential and non-differential measurement error. It can

be said that the error in the observed value W is non-differential if W contains no

additional information about Y with respect to X. In this case, W is said to be a

surrogate for X if the conditional independence of Y and W exist, that is, Y and

W are independent given X = x. Otherwise the measurement error is said to be

differential.

1.2.1 Effect of Measurement error in parameter estimation

The naive inference procedure leads to biased estimates of regression coefficients

in the presence of measurement error. To demonstrate the impact of measurement

error on the parameter estimation we conduct a simple simulation study. We

consider a classical simple linear regression model with an error-prone covariate

as follows

Yi = β0 + βxXi + εi; i = 1, 2, . . . , n = 100, (1.4)

10



where Xi ∼ N(µx, σ2
x) and εi ∼ N(0, σ2

ε ). Let Xi be the error-prone covariate and

let us consider a classical additive structural measurement error model for Xi as

follows

Wi = Xi + ei; i = 1, 2, . . . , n, (1.5)

where Wi is the surrogate of variable Xi and ei’s are assumed to be independent

and identically distributed with mean 0 and variance σ2
e . Also, we assume that

Xi, Wi and εi are mutually independent.

Now for simulation purpose, we generate Xi, i = 1, 2, . . . , 100 from N(µx =

0, σ2
x = 1) and Yi from (1.4) for which we consider the true value of regression

coefficients are β0 = 0, βx = 1 and εi ∼ N(0, 1/4). Moreover, we generate

e1, e2, . . . , e100 from N(0, σ2
e = 1) for Figure 1.1 and consider the additive error

model (1.5) for Xi. We get the naive estimate of the linear regression model to the

observed data {(Yi, Wi); i = 1, 2, . . . , 100}.

Firstly, we regress Y on X and Y on W and then compare them to see the ef-

fects of measurement error by Figure 1.1. Based on Figure 1.1, we can see the bias

as the slope for the error-prone data is too small in absolute value. Moreover, the

variability about the line is much larger which indicate the excess variance of the

error-prone data and definitely excess variance indicates the loss of power.
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Figure 1.1: Illustration of the impact of with and without measurement error on
data

Secondly, we vary σe within [0, 2] to reflect the variation of the degree of measure-

ment error. we simulate the data for 200 times for each value of σe and record

the empirical averages of the naive estimator and finally plot them in Figure 1.2.

It is obvious from Figure 1.2 that the measurement error causes bias the naive

estimator towards zero. This is known as so-called attenuation phenomenon. This

attenuation factor depends on the magnitude of the measurement error variance.

If the variance is larger, the attenuation will increase. With the large error in the

reliability ratio (Carroll et al., 2006)
σ2

x
(σ2

x + σ2
e )
≤ 0.5 with σ2

x denoting the variance

of Xi, the bias of the naive estimator compared to the true estimator is over 60%.
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At the same time it can be observed from Figure 1.2 that the classical measurement

error causes loss of power. It means that the increase of variance of measurement

error causes the power loss.

Figure 1.2: Demonstration of the effect of measurement error on regression coeffi-
cients

The attenuation phenomenon is confirmed theoretically as follows. Under the

non-differential measurement error assumption and classical additive error model,

naively fitting the linear model (1.4) to the observed data {(Yi, Wi); i = 1, 2, . . . , 100}

tends to a misspecified model

Yi = β∗0 + β∗xXi + ε∗i ; i = 1, 2, . . . , n, (1.6)

where β∗0 and β∗x are regression coefficients under the wrong model and ε∗i ∼
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N(0, σ∗ε ). The naive least square estimate for βx is then given by

β̂∗x =
∑n

i=1(Wi − W̄)(Yi − Ȳ)
∑n

i=1(Wi − W̄)2 ,

where W̄ = ∑n
i=1 Wi

n and Ȳ = ∑n
i=1 Yi

n .

After some algebra we can write the naive least square estimator as

β̂∗x =
∑n

i=1(Wi − W̄){βx(Xi − X̄) + (εi − ε̄)}
∑n

i=1(Wi − W̄)2

= βx
∑n

i=1(Wi − W̄)(Xi − X̄)

∑n
i=1(Wi − W̄)2 +

∑n
i=1(Wi − W̄)(εi − ε̄)

∑n
i=1(Wi − W̄)2

= βx
∑n

i=1(Xi − X̄ + ei − ē)(Xi − X̄)

∑n
i=1(Xi − X̄ + ei − ē)2 +

∑n
i=1(Wi − W̄)(εi − ε̄)

∑n
i=1(Wi − W̄)2

= βx
∑n

i=1(Xi − X̄)2 + ∑n
i=1(Xi − X̄)(ei − ē)

∑n
i=1(Xi − X̄)2 + 2 ∑n

i=1(Xi − X̄)(ei − ē) + ∑n
i=1(ei − ē)2

+
∑n

i=1(Wi − W̄)(εi − ε̄)

∑n
i=1(Wi − W̄)2

p→ βx

( σ2
x

σ2
x + σ2

e

)
, as n→ ∞,

where independence between Xi and ei and independence between Wi and εi are

assumed for the convergence in probability. Therefore, the regression coefficient

estimate with the mismeasured covariate using the naive analysis procedure tends

to be attenuated estimate. This attenuation increases with the magnitude of the

variance of the measurement error.

However, Berkson error model causes little or no bias in the estimates of re-

gression parameters compared to classical additive error model in case of linear
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regression. The reason for this is the measurement error ei is simply imbibed into

εi in the response model. That is,

Yi = β0 + βxWi + (βxei + εi) as Xi = Wi + ei, under Berkson error model

= β0 + βxWi + ε∗i ,

where ε∗i has variance (β2
xσ2

e + σ2
ε ).

Figure 1.3: Impact of Berkson measurement error on simple linear regression

This can be obviously seen from Figure (1.3) which illustrates the unbiasedness of

the regression parameter. That is the fit of Yi on Wi and Yi on Xi are, in fact, almost

similar which indicates that the measurement error is ignorable in this situation.

Figure 1.3 is drawn using the same simulated data used for classical measurement
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error under Section 1.2.1. The Berkson error model also decreases the power of a

study because of the random error variance inflation.

1.2.2 Methods for handling measurement error

There have been numerous methods for the correction of bias caused by measure-

ment error in literatures. These approaches are referred as functional methods

and structural methods based on the distributional assumption of the unobserved

variable, availability of additional data about the unobserved variable and the

parametric or non-parametric assumption of the approach. Comprehensive re-

views of the covariate measurement error methods are provided in Fuller (2009),

Gustafson (2004), and Carroll et al. (2006). Some popular used methods for co-

variate measurement errors in regression include the corrected scores approach

of Nakamura (1990, 1992), regression calibration, the simulation-extrapolation

(SIMEX) approach (Cook and Stefanski, 1994), likelihood methods, approxima-

tion methods and Bayesian methods. When it is important to specify a marginal

distribution of the error-prone covariate or it is of interest to study the marginal

behaviour of error variables, then the structural methods are needed. Minimal

distributional assumption of the unobserved covariates are needed for the regres-

sion calibration and SIMEX method. On the other hand, likelihood methods and

Bayesian methods make strong distributional assumption on the unobserved co-

variates, so they are more efficient if the specification of the covariate distribution

is correct.
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1.2.3 Mixed measurement error models

Mixed effects models have become increasingly popular to model cluster depen-

dence in which the response can be defined as a function of two effects: fixed

effects and unobserved cluster specific random effects and error terms. The data

within the same cluster are correlated as they share common random effects.

Mixed effects models contain two types of parameters: fixed effects which asso-

ciate with the mean effects of predictors on the response; random effects which

indicate the cluster effects on the repeated measurements in corresponding clus-

ters.

In linear mixed effects models, the fixed effects and the random effects have

a linear combination to the response. For longitudinal data, classical linear re-

gression is inappropriate because of the correlation of the observation within

each cluster. Linear mixed effects models can obtain from classical linear regres-

sion models by introducing the random effects to incorporate the within-cluster

correlation and between-cluster variation. The magnitude of the random effects

measure the between and within cluster-variations. As the linear mixed models

(LMM) incorporate two types of variation, it can be interpreted as a hierarchical

two-stage model where within-individual variation can be specified in first stage

and between-individual variation in second stage (Wu, 2009).

In a generalized linear mixed models given the random effects, the responses are

assumed to have a distribution (normal, binomial, etc.) and mean of the responses

is related with the covariates through a generalized linear models (GLMs). Hence,
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GLMMs are an extension of linear mixed models to allows response variables

from different distribution. Moreover, it can be said that the GLMMs are the

extension of the GLMs by including both the fixed and random effects.

For example, let Yij be the response of systolic blood pressure for individual

i at the j yearly visit in a clinic and Zij be the age of that individual. This is a

linear relationship between these two variables with a subject-specific intercept

and slope. Then a suitable LMM can be written as

Yij = β0 + Zijβz + Aijui + εij (1.7)

where Aij = (1, Zij) and ui = (u0,i, u1,i)
T. Here, β0 and βz are the intercept and

slope across the population and u0,i and uz,i are the deviations of intercept and

slope from the average for the subject i. The matrix of covariance components is

D(θ) =

[
var(u0,i) cov(u0,i, u1,i)

cov(u0,i, u1,i) var(u1,i)

]
.

Now suppose that the response variable Yij is related to a true nutrition intake,

Xij, over the past year. If we consider the regression coefficient of Xij as fixed

effect, that is, independent of the subject, then the LMM can be used to model the

relationship between Yij, Xij and Zij as follows

Yij = β0 + Xijβx + Zijβz + Aijui + εij. (1.8)

If we assume that the true intake is unobserved and the observed intake is Wij,

then we have a linear mixed measurement error model (LMMeM). The LMMeM
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can be fitted by using standard methods for LMM given Wij. Now the GLMMs of

Yij given Xij and Zij can be written as

g(µui
ij,x) = β0 + Xijβx + Zijβz + Aijui, (1.9)

Here µ
ui
ij,x is the expected value of Yij given the random effects, and the ui are

i.i.d normal random vectors with mean zero and covariance matrix D(θ). For the

measurement error effects on a GLMM for Yij, Xij and Zij, a new GLMM relating

Yij to Wij and Zij, by assuming the additive measurement error and normal

structural model. This new models are known as generalized linear measurement

error model (GLMMeM) (Wang et al., 1998). To illustrate this, we assume Xij

are mutually independent and follows normal distribution with µx and σ2
x , and

independent of Zij. And then the models in Wang et al. (1998) are obtained under

the assumption of classical structural additive errors, that is,

Wij = Xij + eij,

where the eij are independent and normally distributed with mean zero and

covariance matrix σ2
e . One can also consider the multiple version of variables in

the above equations.

1.3 Modelling the Random Effects Covariance Matrix

in Mixed Model

Random effects (mixed) models are a common class of models used frequently to

analyse longitudinal data. These models offer many advantages such as ability to
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handle various observation times across individuals and permit non-stationary

covariance structures. However, little attention has been taken to modelling the

random effects covariance matrix in these models. In particular, in modelling,

it is often neglected whether this variance-covariance matrix is the same for the

all individuals/subjects or whether it varies from subject to subject. Hence, in

these models, typically it is assumed that the random effects covariance matrix is

constant across the subjects.

For analysing discrete longitudinal data, GLMMs are commonly used and in

these models, biased estimates of the fixed effects can result by ignoring this

heterogeneity (Heagerty and Kurland, 2001). For continuous longitudinal data,

the inferences of the parameters and the standard errors for the fixed and random

effects will be incorrect. Moreover, in the presence of missing data or covariate

measurement errors, incorrectly modelling the covariance structure can result in

biased estimates of fixed effects.

Many authors have discussed the issue of accounting the heterogeneity in co-

variance matrix. Chiu et al. (1996) model the covariance matrix using a log

matrix parametrization in marginal models and obtain estimates using estimat-

ing equations. Using the modified Cholesky decomposition, Pourahmadi (1999,

2000) developed random effects covariance matrix depending on subject-specific

covariates. Following the idea of modified Cholesky decomposition, Daniels

and Pourahmadi (2002) develop a class of dynamic conditionally mixed models

by allowing to vary the marginal covariance matrix across subjects. However,
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they consider the random effects covariance matrix to be fixed across individu-

als. Daniels and Zhao (2003) and Pourahmadi and Daniels (2002) propose the

similar type of modelling for random effects covariance matrix. Lin et al. (1997)

examine heterogeneity in the within-individual variance in linear mixed models.

To deal with unbalanced longitudinal data, Pourahmadi’s (Pourahmadi , 1999,

2000) method is generalized by Pan and Mackenzie (2003, 2006). Recently, Lee et

al. (2012) develop a heterogeneous random effects covariance matrix for GLMMs

which depends on covariates. The modified Cholesky decomposition is used

in their work to obtain the random effects covariance matrix. However, to our

knowledge no work has been done on modelling the random effects covariance

matrix for GLMMs with covariate measurement errors.

1.4 Contribution of the Dissertation

In many medical studies, longitudinal data or repeated measurement data occur

frequently where often changes in a particular characteristic in the participating

individuals are investigated by observing repeatedly over time. The GLMMs are

commonly practiced to analyse such data (Breslow and Clyton, 1993; McCulloch

and Searle, 2001; Diggle et al., 2002) and it enables us to account for between and

within individuals heterogeneity. It is an important requirement that variables are

perfectly measured for the validity of inferential methods. However, in practice,

longitudinal data are prone to be not perfect and seriously biased results can be

led by ignoring this.
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Covariate measurement error is a common typical feature of longitudinal study

(Carroll et al., 2006). There have been considerable works for the analysis of

longitudinal data with missing values in the literature (Ibrahim et al., 1999, 2001;

Yi and Cook, 2002; Molenberghs and Kenward, 2007; Wu et al., 2009). Recently,

the attention has been increased to address the effects of covariate measurement

error in the analysis of longitudinal data (Carroll et al., 2006, ch 11).

Extensive work has been done on covariates measurement error (Cook and Ste-

fanski, 1994; Carroll et al., 1995; Lin et al., 1996; Wang et al., 1998, Fuller, 2009;

Torabi, 2013). The GLMMs framework are adopted to make the inference proce-

dure in most of the cases. In these models, it is assumed that the random effects

covariance matrix is constant across the subject and also the high dimensionality

and positive definite constraints make the structure of random effects covariance

matrix restricted. However, the covariance matrix may vary by measured co-

variates in many situation, and biased estimates of the fixed effects may result

by ignoring this heterogeneity (Heagerty and Kurland, 2001). In 2011, Yi et al.

presented a fairly general framework to make inference for longitudinal data with

covariates measurement error and missing responses simultaneously by adopting

the framework of GLMMs. They have employed the EM algorithm to conduct

inference for parameters of interest (Meng and Van Dyk, 1998). However, in their

work the random effect covariance matrix has been left unspecified. Recently, Lee

et al. (2012) introduced a heterogeneous random effects covariance matrix for

GLMMs by using modified Cholesky decomposition (Pourahmadi, 1999, 2000)

which depends on covariates.
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In this thesis, our goal is to properly model the random effects covariance matrix

under the framework of GLMMs with covariates measurement errors. For this

purpose, we extend the model introduced by Lee et al. (2012) for the random

effects covariance matrix for the GLMMs to the case when the covariates are

also subject to measurement error. An important benefit of using random effects

covariance matrix by defining covariates and Cholesky decomposition is that each

subject has specific covariance structure and also our proposed model accounts

for the covariates measured with error.

1.5 Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2, the Proposed approach to

model the random effects covariance matrix for GLMMs with covariates measure-

ment error is given. Also the general framework is provided to make the inference

procedure to estimate model parameters. Chapter 3 contains the simulation study

to assess the performance of the different methods (Proposed method, Naive

2 method and Naive 1 method). In Chapter 4, a real data set from Manitoba

Follow-up Study is analysed. We make some conclusions based on the Proposed

method and discuss some future work direction in Chapter 5.
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Chapter 2

Theory and Methods

2.1 Notation and Model Specification

The model of interest specifies repeated measures on each of n subjects with

responses that follow a generalized linear model with random intercepts for each

subjects, with time-specific covariates that is subject to error and time-specific

error free covariates. Suppose that Yij be the response variable at time point j

for subject i. Let Xij be the vector of error-prone covariates, and Zij be the vector

of error-free covariates, i = 1, 2, . . . , n, and j = 1, 2, . . . , m. Further, let Wij be

an observed version of Xij. Denote the response vector for the ith subject by

Yi = (Yi1, . . . , Yim)
T and also denote Xi = (XT

i1, . . . , XT
im)

T, Zi = (ZT
i1, . . . , ZT

im)
T,

and Wi = (WT
i1, . . . , WT

im)
T.

24



2.2 Response Process

We assume that Yij follows a conditional distribution in the exponential family

given the random effects ui, taking the form

f (yij|ui; ηij, φ) = exp{(yijηij − b(ηij))/a(φ) + c(yij, φ)}, (2.1)

where, a(·), b(·) and c(·, ·) are known functions and parameters ηij can be further

modelled to accommodate within-subject variability. The φ is the dispersion

parameter that is known or to be estimated such as (e.g.) φ = 1 for binary

response. To emphasize on the estimation of parameters of interest we treat φ as

known here. We assume Yi follows the GLMM and model a transformation of the

mean as a linear model in both fixed and random factors:

µij = E[Yij|ui]

g(µij) = β0 + XT
ij βx + ZT

ij βz + ui, (2.2)

where g(·) is the link function and β = (β0, βT
x , βT

z )
T is the fixed vector of regres-

sion parameters.

Also suppose that the random effects, ui, are independent and identically dis-

tributed, and independent of the explanatory variables. Here,

ui ∼ N(0, Σi),

ui = (ui1, . . . , uim)
T is a m× 1-dimensional vector of random effects and random

effects covariance matrix Σi is indexed by subject i.
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We also assume, f (yi|ui, xi, wi, zi) = f (yi|ui, xi, zi), which is related to the usual

non-differential error mechanism (Carroll et al., 2006, p. 36), but is different due

to the dependence on the random effects.

2.3 Measurement Error Process

To feature the measurement error process we employ a multiple regression model

(Carroll et al., 2006, p. 27) as follows:

Wij = γ0 + ΓxXij + ΓzZij + eij , (2.3)

where error terms eT
ijs are independent of Xij, Zij, and the responses as well

as random effects ui. Also, eij follow a distribution, f (eij, τ), where τ is the

associated parameters. It is often assumed that eij has zero mean. Let γ0 =

(γ01, . . . , γ0p)
T be the vector of intercept coefficients, Γx = (Γx1, . . . , Γxp)T and

Γz = (Γz1, . . . , Γzq)T denote the vector of regression coefficients, respectively. Here,

p and q are the dimensions of Wij and Zij, respectively. Also let γ = (ΓT
0 , ΓT

x , ΓT
z )

T

be the vector including all the regression coefficients. By setting Γ0 = 0, Γz =

0 & Γx = Ip, where Ip is the p× p identity matrix, the above model (2.3) can be

written as classical additive error model (Carrol et al., 2006, p.27):

Wij = Xij + eij.

Another class of measurement error models named Berksn error models can be

obtained by notationally switching Wij and Xij in (2.3). That is, Xij = Wij + eij.
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2.4 A Model for the Random Effects Covariance Ma-
trix

The main contribution in this thesis is to use a specified model for the random

effects covariance matrix for GLMMs with covariates measurement error where

heterogeneity of the random effects covariance matrix is ignored. For this purpose

we employ the structure of the random effects covariance matrix given by Lee

et al. (2012). They propose a heterogeneous random effects covariance matrix

for GLMMs which depends on subject-specific covariates. Actually, to model Σi,

random effects covariance matrix, they decompose the random effects covariance

matrix based on the modified Cholesky decomposition (Pourahmadi, 1999, 2000)

which results in a set of dependence parameters, generalized autoregressive

parameters (GARPs) and a set of variance parameters, innovation variances (IVs).

The basic idea of this proposed structure is that the covariance matrix Σi of

the random effects vector ui, can be diagonalized by a lower triangular matrix

which is constructed from the regression coefficients when uij is regressed on its

predecessors ui1, ui2, . . . , uij−1. More specifically, it can be written as:

ui1 = εi1 (2.4)

uij =
j−1

∑
t=1

φi,jtuit + εij, for j = 2, 3, . . . , m, (2.5)

where, εi = (εi1, εi2, . . . , εim)
T ∼ N(0, Di) with Di = diag(σ2

i1, σ2
i2, . . . , σ2

im). Then

for the j = 2, 3, . . . , m we can write (2.4) and (2.5) in matrix form as follows:

Tiui = εi, (2.6)
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where Ti is a unit lower triangular matrix having ones on its diagonal and −φi,jt

in the (j, t)th position for 2 ≤ j ≤ m and t = 1, 2, . . . , j− 1.

From (2.6) we can write

TiΣiTT
i = var(εi) = Di.

The GARPs are denoted by φ and σ2
ij represents the IVs. Time-and/or subject-

specific covariate vectors can be used to model the GARPs and IVs by setting

φi,jt = kT
i,jtδ, log

(
σ2

ij

)
= hT

i,jλ, (2.7)

where δ and λ are a × 1 and b × 1 vectors of unknown dependence parame-

ters, respectively. The design vectors ki,jt and hi,j are covariates to model the

GARP/IV parameters as a function of the subject specific covariates (Pourahmadi,

2000; Pourahmadi and Daniels, 2002; Deniels and Zhao, 2003; Lee et al., 2012).

The parametrization of GARPs or IVs has various advantages. Firstly, we can

model the random effects covariance matrix in terms of covariates because of

unconstrained character of GARPs and IVs. Secondly, as in (2.7) there is a linear

combination of covariates, the parameters have a reasonable interpretation and

easy to model (Deniels and Zhao, 2003; Lee et al., 2012) and the positive definite-

ness of Σi is guaranteed because of the positive σ2
ij. Also we can have specific Σi

for each subject i. The proposed approach also covers the AR(1) as a special case.
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2.5 The General Inference Method

To derive the likelihood function for the GLMM with covariates measurement

error, let us define the parameters as θ = (βT, γT, τT, δT, λT)T. The complete data

likelihood function of yi, xi, ui for subject i can be written as:

Li(θ; yi, xi, ui) = f (yi, xi, wi, zi, ui; θ)

= f (yi|xi, zi, ui; β) f (xi, wi, zi, ui; θ)

= f (yi|xi, zi, ui; β) f (xi|wi, zi; γ, τ) f (ui; δ, λ),

where f (yi|xi, zi, ui; β) belongs to the exponential family (2.1) given the random

effects. Also we can assume,

f (xi|wi, zi; γ, τ) ∼ N(µ f , σ2
f ),

where the details of µ f , σ2
f are given in Section (2.6) and independent of ui. Also

assuming that the random effects, ui, are independent and identically distributed,

and independent of the explanatory variables:

ui ∼ f (ui|xi, zi; δ, λ) = f (ui; δ, λ)

and the f (ui; δ, λ) has a multivariate normal density with mean vector 0 and

covariance matrix Σi and this can be simplified based on the proposed structure

of the random effect covariance matrix (Lee et al., 2012) as follows:

f (ui; δ, λ) = (2π)−m/2
[ m

∏
j=1

(
σ2

ij

)−1/2
]

exp

(
−1

2

m

∑
j=1

ε2
ij

σ2
ij

)
with εi1 = ui1.
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Then we can write the complete data log-likelihood as:

lc(θ) =
n

∑
i=1

log Li(θ; yi, xi, ui)

=
n

∑
i=1
{ log f (yi|xi, zi, ui; β) + log f (xi|wi, zi; γ, τ) + log f (ui; δ, λ)} . (2.8)

The EM algorithm is employed to evaluate the above log-likelihood function

because of its intractable form (Meng and Van Dyk, 1998). The E-step can be

written as (at iteration l):

Q(θ | θ(l)) = E
[
lc(θ)|Yi, Wi, Zi; θ(l)

]
=

n

∑
i=1

∫ ∫ {
log f (yi|xi, zi, ui; β) + log f (xi|wi, zi; γ, τ)

+ log f (ui; δ, λ)

}
f
(

xi, ui|yi, wi, zi; θ(l)
)

dxidui

= I1 + I2 + I3, (2.9)

where f
(

xi, ui|yi, wi, zi; θ(l)
)

is the conditional density of missing components

(xi, ui) given the observed data (yi, wi, zi). As in the above Q(θ|θ(l)) function, the

multiple integrals are not in closed form for computation, it is not often possible

to evaluate this expectation directly. Hence Monte Carlo EM (MCEM) algorithm

can be employed (McCulloh and Searl, 2001, Sect. 10.3). To do this, we need

to generate a sample from f (xi, ui|yi, wi, zi; θ(l)) for each i. Gibbs sampling or

Metroplois-Hasting algorithm can be used to accomplish this (McCulloch, 1997;

Levine and Casella, 2011; Fort and Moulines, 2003; Caffo et al., 2005). Essentially,
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we can iteratively sample from f (xi|yi, ui, wi, zi; θ(l)), f (ui|yi, xi, wi, zi; θ(l)). These

conditional distributions have the form respectively as follows:

f (xi|yi, ui, wi, zi; θ(l)) ∝ f (yi|xi, ui, zi; θ(l)) f (xi|wi, zi; θ(l))

f (ui|yi, xi, wi, zi; θ(l)) ∝ f (yi|xi, ui, zi; θ(l)) f (ui; θ(l))

Suppose that, we take a pseudo-random sample of size M,
{(

x(1)i , u(1)
i
)
,
(
x(2)i ,

u(2)
i
)
, . . . ,

(
x(M)

i , u(M)
i
)}

for individual i, from the joint distribution f
(
xi, ui|yi

, wi, zi; θ(l)
)

via the Metropolis-Hasting algorithm. Then the E-step at the (l + 1)th

EM iteration can be written as:

Q(θ|θ(l)) ≈
n

∑
i=1

{
1
M

M

∑
k=1

lc
(

θ(l); yi, x(k)i , u(k)
i

)}

=
n

∑
i=1

M

∑
k=1

1
M

log f
(

yi, |x
(k)
i , zi, u(k)

i ; β
)

+
n

∑
i=1

M

∑
k=1

1
M

log f
(

x(k)i |wi, zi; γ, τ
)
+

n

∑
i=1

M

∑
k=1

1
M

log f
(

u(k)
i ; δ, λ

)
= Q(1)(β; θ(l)) + Q(2)(γ, τ; θ(l)) + Q(3)(δ, λ; θ(l)). (2.10)

In the M-step of MCEM algorithm, an optimization procedure can be employed

to maximize Q(θ | θ(l)) with respect to θ to produce an updated estimate θ(l+1).

These E and M steps will continue until convergence and then the current values

of θ will be declared as MLEs of θ.

By the following steps we can describe the algorithm:

1. Choose the starting values,θ(0) =
(

β(0), γ(0), τ(0), δ(0), λ(0)). Set l = 1.
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2. Generate M vectors
(
x(k)i , u(k)

i
)
,
(
k = 1, 2, . . . , M

)
, from the conditional

distribution
(
xi, ui

)
given

(
yi, wi, zi

)
with unknown parameters vs in the

distribution replaced by the current estimate θ(l−1) using the Metroplis-

Hasting algorithm.

a. Calculate β(l) as the value that maximizes

n

∑
i=1

M

∑
k=1

1
M

log f
(

yi|x
(k)
i , zi, u(k)

i ; β
)

b. Calculate γ(l) and τ(l) as those values that maximize

n

∑
i=1

M

∑
k=1

1
M

log f
(

x(k)i |wi, zi; γ, τ
)

c. Calculate δ(l) and λ(l) as those values that maximize

n

∑
i=1

M

∑
k=1

1
M

log f
(

u(k)
i ; δ, λ

)

d. Set l = l + 1

3. If convergence is achieved, the current values can be declared as the ML

estimates, otherwise return to step (2).

Standard errors of model parameters estimate

The standard errors of the MLEs cannot be automatically obtained from EM

algorithm. To obtain the asymptotic variance-covariance matrix of θ̂, we can use
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the formula given by McLachlan and Krishnan (2007) which is

Ĉov(θ̂) ≈
[ n

∑
i=1

M

∑
k=1

1
M

Sik(θ̂)ST
ik(θ̂)

]−1

, (2.11)

where, Sik(θ̂) =
∂lc
(

θ; yi, x(k)i , u(k)
i

)
∂θ

∣∣∣∣∣
θ=θ̂

. Then by taking the square root of the

diagonal element of Ĉov(θ̂), the standard errors of the MLEs can be obtained. One

can also use an optimization procedure to get the standard error. For example,

optim function in R-program provides the hessian matrix which can be used to

calculate the standard errors (R core team, 2016).

2.6 An Illustration

As an illustration of MCEM algorithm method, let us consider the longitudinal

binary data and assume the following logistic mixed model

logit
{

P(Yij = 1 | Xij, Zij, uij)
}
= β0 + βxXij + βzZij + uij.

And the density function for yij is given by

f (yij|xi, zi, ui; β) = Pij(uij)
yij(1− Pij(uij))

1−yij ,

i = 1, 2, . . . , n and j = 1, 2, . . . , m

with
Pij(uij) = P(Yij = 1|Xij, Zij, uij)

=
exp(xT

ij β + uij)

1 + exp(xT
ij β + uij)

where xij = (Xij, Zij)
T and βT = (β0, βx, βz)
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and 1− Pij(uij) =
1

1 + exp(xT
ij β + uij)

.

Then we can write the following density function:

f (yi|xi, zi, ui; β) =
exp

{
∑m

j=1 yij
(
xT

ij β + uij
)}

∏m
j=1
{

1 + exp
(
xT

ij β + uij
)}

= exp
[ m

∑
j=1

yij
(
xT

ij β + uij
)
−
( m

∑
j=1

log
{

1 + exp
(
xT

ij β + uij
)})]

.

(2.12)

Also, f (ui) has a multivariate normal density with mean vector 0 and covariance

matrix Σi which can be written as

f (ui; δ, λ) = (2π)−m/2
[ m

∏
j=1

(
σ2

ij

)−1/2
]

exp

(
−1

2

m

∑
j=1

ε2
ij

σ2
ij

)
with εi1 = ui1. (2.13)

Moreover, let us consider classical additive structural measurement error model

as

Wij = Xij + eij,

where eij ∼ N(0, τ) and Xij be the vector of covariates subject to error and has nor-

mal distribution N(µx, σ2
x). We can write Wij|Xij ∼ N(Xij, τ). Then the conditional

distribution of Xij|Wij can be written as follows:

Xij

∣∣∣Wij; µx, σ2
x , τ ∼ N(µ f , σ2

f ),

where, µ f =
µxτ + Wijσ

2
x

τ + σ2
x

and σ2
f =

σ2
x τ

τ + σ2
x

. (2.14)
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Therefore, we can write the complete data log-likelihood following (2.8) as:

lc(θ) =
n

∑
i=1

log Li(θ; yi, xi, ui)

=
n

∑
i=1

[
m

∑
j=1

yij
(
xT

ij β + uij
)
−
( m

∑
j=1

log
{

1 + exp
(
xT

ij β + uij
)})]

+
n

∑
i=1

−m
2

log
(

2π
σ2

x τ

τ + σ2
x

)
− 1

2

m

∑
j=1

(
Xij −

µxτ + Wijσ
2
x

τ + σ2
x

)2

σ2
x τ

τ + σ2
x



+
n

∑
i=1

[
−m

2
log (2π)−

m

∑
j=1

1
2

log σ2
ij −

1
2

m

∑
j=1

ε2
ij

σ2
ij

]
, (2.15)

where θ =

(
βT, γT = (µx, σ2

x)
T, τT, δT, λT

)T

is the associated parameters to

develop EM algorithm. We can write the observed data likelihood as follows

L(θ; yi, xi, ui) =
∫ ∫

f (yi|xi, zi, ui; β) f (xi|wi; γ, τ) f (ui; δ, λ)

f (xi, ui|yi, wi, zi; θ) dxidui (2.16)

This likelihood function is not in closed form to express and we rely on MCEM

algorithm to evaluate this. Here we consider the parameters β, δ, λ, γ, τ for

estimation. The ML estimators of β, δ, λ, γ, τ can be obtained by solving the

following estimating equations:

n

∑
i=1

E
{

∂ log f
(
yi
∣∣ xi, zi, ui; β

)
∂β

∣∣∣∣∣yi, wi, zi

}
= 0,
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n

∑
i=1

E
{

∂ log f
(
xi; γ, τ

)
∂γ

∣∣∣∣∣yi, wi, zi

}
= 0,

n

∑
i=1

E
{

∂ log f
(
xi; γ, τ

)
∂τ

∣∣∣∣∣yi, wi, zi

}
= 0,

n

∑
i=1

E
{

∂ log f
(
ui; δ, λ

)
∂δ

∣∣∣∣∣yi, wi, zi

}
= 0,

n

∑
i=1

E
{

∂ log f
(
ui; δ, λ

)
∂λ

∣∣∣∣∣yi, wi, zi

}
= 0,

where the conditional expectations are with respect to the conditional distribution

of missing components
(
xi, ui

)
given the observed data

(
yi, wi, zi

)
. Here for the

parameters β, δ, λ, γ, τ score functions for individual i can be expressed as:

∂log L(θ; yi, xi, ui)

∂β
=

1
L(θ; yi, xi, ui)

∫ ∫
∂ f (yi|xi, zi, ui; β)

∂β

f (xi|wi, zi; γ, τ) f (ui; δ, λ)dxidui (2.17)
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where,

∂ f (yi|xi, zi, ui; β)

∂β
= exp

[ m

∑
j=1

yij
(
xT

ij β + uij
)
−
( m

∑
j=1

log
{

1 + exp
(
xT

ij β + uij
)})]

[ m

∑
j=1

yijxij −
1

1 + exp
(
xT

ij β + uij
) exp

(
xT

ij β + uij
)

xij

]

= exp
[ m

∑
j=1

yij
(
xT

ij β + uij
)
−
( m

∑
j=1

log
{

1 + exp
(
xT

ij β + uij
)})]

[ m

∑
j=1

(
yij − Pij(uij)

)
xij

]

Also,

∂log L(θ; yi, xi, ui)

∂τ
=

1
L(θ; yi, xi, ui)

∫ ∫
f (yi|xi, zi, ui; β)

∂ f (xi|wi; γ, τ)

∂τ
f (ui; δ, λ)dxidui (2.18)

where,

∂ f (xi|wi; γ, τ)

∂τ
=

∂

∂τ

[
exp

{
log f (xi|wi; γ, τ)

}]

= f (xi|wi; γ, τ)
∂

∂τ

{
log f (xi|wi; γ, τ)

}
,

and,

∂log L(θ; yi, xi, ui)

∂γ
=

1
L(θ; yi, xi, ui)

∫ ∫
f (yi|xi, zi, ui; β)

∂ f (xi|wi; γ, τ)

∂γ
f (ui; δ, λ)dxidui (2.19)
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where,

∂ f (xi|wi; γ, τ)

∂γ
=

∂

∂γ

[
exp

{
log f (xi|wi; γ, τ)

}]

= f (xi|wi; γ, τ)
∂

∂γ

{
log f (xi|wi; γ, τ)

}
.

Furthermore,

∂log L(θ; yi, xi, ui)

∂δ
=

1
L(θ; yi, xi, ui)

∫ ∫
f (yi|xi, zi, ui; β)

f (xi|wi, zi; γ, τ)
∂ f (ui; δ, λ)

∂δ
dxidui (2.20)

where,

f (ui; δ, λ) = (2π)−m/2
[ m

∏
j=1

(
σ2

ij

)−1/2
]

exp

(
−1

2

m

∑
j=1

ε2
ij

σ2
ij

)
with εi1 = ui1,

φi,jt = kT
i,jtδ, log

(
σ2

ij

)
= hT

i,jλ

uij =
j−1

∑
t=1

φi,jtuit + εij, for j = 2, 3, . . . , m

Then we can write
∂ f (ui; δ, λ)

∂δ
=

∂

∂δ

[
exp

{
log f (ui; δ, λ)

}]

= f (ui; δ, λ)
∂

∂δ

{
log f (ui; δ, λ)

}
= − f (ui; δ, λ)

m

∑
j=1

εij

σ2
ij

∂εij

∂δ

with
∂εi1

∂δ
= 0 as εi1 = ui1 and

∂εij

∂δ
= −

j−1

∑
t=1

uitki,jt.
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Similarly, we can write

∂log L(θ; yi, xi, ui)

∂λ
=

1
L(θ; yi, xi, ui)

∫ ∫
f (yi|xi, zi, ui; β)

f (xi|wi, zi; γ, τ)
∂ f (ui; δ, λ)

∂λ
dxidui,

(2.21)

where,

∂ f (ui; δ, λ)

∂λ
=

∂

∂λ

[
exp

{
log f (ui; δ, λ)

}]
.

And after some algebra, we can write

∂ f (ui; δ, λ)

∂λ
= f (ui; δ, λ)

m

∑
j=1

( ε2
ij

σ2
ij
− 1
)

hi,j.

The MCEM can be then used to get the approximation of the integrals in (2.17)-

(2.21).

We follow the equation (2.9) to get the E-step of the MCEM. To evaluate E-steps we

generate sample from these conditional distributions using Metropolis-Hasting

(M-H) algorithm. We illustrate the algorithm for the following case:

f (xi|yi, ui, wi, zi; θ(l)) ∝ f (yi|xi, ui, zi; θ(l)) f (xi|wi, zi; θ(l)).
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That is, when xi is missing we can write the algorithm as follows to generate data

for each iteration. Here,

f (X) = f (xi|yi, ui, wi, zi; θ(l))

∝ f (yi|xi, ui, zi; θ(l)) f (xi|wi, zi; θ(l))

∝
exp

{
∑m

j=1 yij
(
xT

ij β + uij
)}

∏m
j=1
{

1 + exp
(
xT

ij β + uij
)} × exp

{
−

m

∑
j=1

(Xij − µ f )
2

2σ2
f

}
(following 2.14)

g(X) = exp
{
−

m

∑
j=1

(Xij − µ f )
2

2σ2
f

}
.

To do M-H, we first generate initial sample x0 = (x01, . . . , x0m) from N(µ f , σ2
f ).

Then we generate a sample x from N(µ f , σ2
f ) and v from uniform (0, 1). After that

we compute the acceptance ratio as:

Ak(xi−1, x) = min
{

f (xi−1)g(x)
f (x)g(xi−1)

, 1
}

.

Now, if

v < Ak(xi−1, x), then xi = x

v > Ak(xi−1, x), then xi = xi−1.

Similarly, we can generate samples from the other conditional distributions as

well. And after generating samples we evaluate the E-steps and M-steps following

the algorithm given in the general inference method section.
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Chapter 3

Simulation

3.1 Simulation Set-up

We conduct a simulation study to evaluate the performance of our Proposed

approach. In particular, we make a comparison of the efficiency of our Proposed

method to the method where covariates measurement error are ignored (Naive 1).

Moreover, we also compare the efficiency of the Proposed method to the method

for GLMMs with covariates measurement error where constant random effects

covariance matrix is considered across the subjects (Naive 2). We use the following

model to simulate data:

logit
{

Pij
}
= β0 + βxXij + βzZij + βz∗Z∗i + uij, (3.1)

i = 1, 2, . . . , n and j = 1, 2, . . . , m,

where Pij = P(Yij = 1|Xij, Z+
ij ), with Z+

ij = (Zij, Z∗i ) and Z∗i equals to 0 or 1

with an equal sample size per group. The error-free covariate Zij is generated as
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the random variables vi + ζij, where vi’s and ζij’s are independently identically

distributed following N(0, 0.52), and they are independent. We consider classi-

cal additive model for the structural measurement error for which we generate

surrogate variable Wij as

Wij = Xij + eij,

where eij’s are independently identically distributed following N(0, σ2), where

σ2 indicates the measurement error variation in covariate Xij. The true covariate

Xij is generated from model Xij = µx + ai + ξij, where µx = 1, ai’s and ξij’s are

independently identically distributed following N(0, 1).

We consider random effects ui = (ui1, . . . , uim) ∼ N(0, Σi). To simplify variance

components of Σi, the parameters of the random effects covariance matrix are

defined as:

φi,jt = δ0 I(|j− t| = 1) + δ1 I(|j− t| = 1)Z∗i and

log(σ2
ij) = λ0 + λ1Z∗i (3.2)

Here, we consider n = 100 and two cases with m = 5, m = 10. The initial val-

ues of β = (β0, βx, βz, βz∗) = (1, 2, 2, 2). We set three different values (0, 0.4, 0.8)

for σ to see the impact of varying degree of measurement error on estimation.

The initial values of the parameters of the random effects covariance matrix are

δ = (δ0, δ1) = (0.5, 0.3), and λ = (λ0, λ1) = (0.1, 0.2).

We generate B = 200 data sets. Then we fit three models: the first model (Pro-

posed Model) is the proposed method; the second model (Naive 2) is the model

which considers homogeneous covariance matrix, that is, uij = ui0 ∼ N(0, σ2
u),
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where σ2
u is the average of the σ2

ij defined in the equation (3.2)and covariate Xij

with measurement error and the third model (Naive 1) is the model which ignores

covariate measurement error and assuming homogeneous covariance matrix.

3.2 Simulation Results

In the following, we report the simulation results of empirical biases (Bias), root

mean square errors (RMSE), and coverage rates (CR) for the 95% confidence

intervals (CI) of the model parameters estimate where e.g. for the β0 (fixed

intercept) we have:

Biasβ0 =
1
B

B

∑
b=1

β̂
(b)
0 − β0,

where β̂
(b)
0 is the estimated value in each simulation run b and β0 is the true value

of this parameter. Also,

RMSEβ0 =
√

Bias2
β0
+ Var2

β0
,

95% CI(b)β0
= β̂

(b)
0 ± 1.96

√
Var(b)(β̂

(b)
0 ),

where the Varβ0 are the average of model-based variances Var(β̂0) over B sim-

ulation runs, and CR is the proportion of times (out of B = 200) that the true

parameter falls in the corresponding 95% CI.

The following Tables represent the results of the three methods (Naive 1, Naive 2,

and Proposed) for the two cases m = 5 and m = 10 under different measurement
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error variations (no error [σ = 0.0], moderate error [σ = 0.4] and severe error

[σ = 0.8]).

Bias RMSE CR
β0 -0.0012 0.2216 0.96
βx 0.0461 0.2253 0.97
βz 0.0326 0.3351 0.96
βz∗ 0.0611 0.3979 0.97
σ2

u -0.0208 0.2338 0.61

Table 3.1a: Simulation results for Naive 1 with m=5 and no error (σ = 0.0)

Bias RMSE CR
β0 0.0049 0.2010 0.97
βx 0.0250 0.1810 0.96
βz -0.0137 0.2571 0.97
βz∗ 0.0042 0.2932 0.98
σ2

u -0.0533 0.1996 0.31

Table 3.1b: Simulation results for Naive 2 with m=5 and no error (σ = 0.0)

Bias RMSE CR
β0 0.0063 0.0647 1.00
βx -0.0046 0.0449 1.00
βz 0.0080 0.0798 1.00
βz∗ -0.0085 0.1002 1.00
δ0 0.5831 1.2232 0.09
δ1 -0.1502 0.2056 0.09
λ0 0.0280 0.1344 0.12
λ1 -0.0069 0.1893 0.08

Table 3.1c: Simulation results for Proposed Method with m=5 and no error (σ =
0.0)

Tables 3.1a, 3.1b and 3.1c show the results of the fixed effect and random effects
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for the three methods with the absence of measurement errors when number of

follow-ups is 5 (m = 5). It is evident form the results that the proposed method

works well under this situation in terms of bias, RMSE and coverage rate for

95% CI. In Naive 1 and Naive 2, we can see considerable bias in fixed effect

estimates (βx = 0.0461, βz = 0.0326, βz∗ = 0.0611 for Naive 1), (βx = 0.0250, βz =

−0.0137, βz∗ = 0.0042 for Naive 2) whereas in Proposed method, except β0, the

estimates show fairly small biases (βx = −0.0046, βz = 0.0080, βz∗ = −0.0085).

The proposed method shows the good coverage rate for 95% CI. The RMSEs are

also smaller for proposed method compared to the other two methods. We can see

considerable bias in fixed effect parameters for misspecification of the distribution

of random effects. In random effect covariance matrix parameters, the GARPs

(δ0, δ1) indicate relatively large bias but the IVs (λ0, λ1) parameters have small

bias.

Tables 3.2a, 3.2b and 3.2c present the results for moderate measurement error

variation. It is obvious here that ignoring the measurement error in data results

considerable biases. The biases tend to increase with the increase of magnitude of

measurement error.

Bias RMSE CR
β0 0.1264 0.2464 0.94
βx -0.2216 0.2942 0.73
βz 0.0032 0.3236 0.95
βz∗ -0.0802 0.3976 0.95
σ2

u -0.0208 0.2338 0.61

Table 3.2a: Simulation results for Naive 1 with m=5 and moderate error (σ = 0.4)
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Bias RMSE CR
β0 -0.0269 0.1802 0.98
βx 0.0547 0.1901 0.99
βz 0.0457 0.3001 0.97
βz∗ 0.0688 0.3378 0.98
σ2

u -0.0275 0.1753 0.25

Table 3.2b: Simulation results for Naive 2 with m=5 and moderate error (σ = 0.4)

Bias RMSE CR
β0 0.0006 0.0484 1.00
βx 0.0051 0.0416 1.00
βz 0.0044 0.0660 1.00
βz∗ 0.0045 0.0918 1.00
δ0 0.4493 1.1386 0.13
δ1 -0.1555 0.2045 0.17
λ0 0.0197 0.1402 0.17
λ1 -0.0170 0.1671 0.13

Table 3.2c: Simulation results for Proposed Method with m=5 and moderate error
(σ = 0.4)

The results indicate the higher biases for Naive 1 and Naive 2, while the Proposed

method shows considerably smaller biases in fixed effects parameters. Moreover,

the proposed method indicates smaller RMSEs as well as good coverage rate for

95% CI in the estimates of fixed effects compared to the other two methods. For

example, the estimates of the coefficient of the measurement error variable (βx)

has bias −0.2216 with 73% coverage rate for Naive 1, 0.0547 with 99% coverage

rate for Naive 2 while in the proposed method the bias reduces to 0.0051 with

100% coverage rate.
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Bias RMSE CR
β0 0.3271 0.3806 0.68
βx -0.7088 0.7228 0.01
βz -0.1506 0.3182 0.90
βz∗ -0.3409 0.4899 0.84
σ2

u -0.0208 0.2338 0.61

Table 3.3a: Simulation results for Naive 1 with m=5 and severe error (σ = 0.8)

Bias RMSE CR
β0 0.0190 0.1816 0.97
βx 0.0194 0.1550 0.98
βz 0.0433 0.2553 0.96
βz∗ -0.0062 0.2791 0.99
σ2

u -0.0353 0.2078 0.28

Table 3.3b: Simulation results for Naive 2 with m=5 and severe error (σ = 0.8)

Bias RMSE CR
β0 0.0087 0.0474 1.00
βx -0.0042 0.0472 1.00
βz -0.0077 0.0664 1.00
βz∗ -0.0109 0.0815 1.00
δ0 0.5940 1.2768 0.20
δ1 -0.1533 0.2055 0.19
λ0 0.0153 0.1163 0.20
λ1 -0.0308 0.1591 0.21

Table 3.3c: Simulation results for Proposed Method with m=5 and severe error
(σ = 0.8)

In case of severe measurement error variation and m=5 (number of follow-ups),

the performance of the three methods is shown in Tables 3.3a, 3.3b and 3.3c. It is

clear from the results that the performance of Naive 1 is noticeably affected with

the increase of magnitude of measurement error. Based on the results, it can be
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seen that there is considerably large finite-sample biases in fixed effects estimates,

β0 = 0.3271, βx = −0.7088, βz = −0.1506, βz∗ = −0.3409 and very low coverage

rates for the 95% CI (68%, 1%, 90%, 84%) respectively for Naive 1 approach. The

biases become smaller for Naive 2 method such as β0 = 0.0190, βx = 0.0194, βz =

0.0433, βz∗ = −0.0062. However, the proposed approach seems to perform very

well with respect to biases, RMSEs as well as the coverage rates. The biases

(β0 = 0.0087, βx = −0.0042, βz = −0.0077, βz∗ = −0.0109) are fairly small with

100% coverage rates. The RMSEs obtained from the methods Naive 1 and Naive 2

are much bigger than those obtained from the the Proposed approach. Also, the

RMSEs for the method Naive 2 are much smaller than the corresponding values

of the method Naive 1.

Bias RMSE CR
β0 0.0041 0.1585 0.96
βx 0.0160 0.1521 0.95
βz 0.0187 0.2264 0.94
βz∗ 0.0226 0.2670 0.95
σ2

u 0.0213 0.2486 0.62

Table 3.4a: Simulation results for Naive 1 with m=10 and no error (σ = 0.0)

Bias RMSE CR
β0 -0.0010 0.0635 1.00
βx 0.0033 0.0533 1.00
βz 0.0057 0.0705 1.00
βz∗ 0.0148 0.1100 1.00
σ2

u -0.0203 0.1044 0.28

Table 3.4b: Simulation results for Naive 2 with m=10 and no error (σ = 0.0)
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Bias RMSE CR
β0 0.0002 0.0214 1.00
βx 0.0005 0.0157 1.00
βz -0.0014 0.0247 1.00
βz∗ 0.0005 0.0343 1.00
δ0 -0.0816 0.2501 0.30
δ1 -0.0466 0.1411 0.32
λ0 0.0158 0.0769 0.34
λ1 0.0070 0.1271 0.30

Table 3.4c: Simulation results for Proposed Method with m=10 and no error
(σ = 0.0)

Tables 3.4a, 3.4b and 3.4c represents the results of the estimates of the coefficients

of fixed and random effects for the three approaches under no measurement error

and 10 number of follow-ups (m = 10). In terms of bias, RMSEs and coverage

rates of 95% CI, it is apparent from the results that the Proposed approach works

perfectly well compared to the other two approaches for fixed effects parameters

estimate. The parameters of the random effect covariance matrix (GARPs, IVs)

also shows smaller and higher coverage rates compared to the 5 number of follow-

ups (m = 5). As expected, the RMSEs of the model parameters estimate for the

Proposed method are smaller than the corresponding values of the both methods

Naive 1 and Naive 2; and also the method Naive 2 has smaller RMSEs compared

to the method Naive 1.
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Bias RMSE CR
β0 0.0402 0.1572 0.98
βx -0.2643 0.2913 0.44
βz -0.1517 0.2557 0.85
βz∗ -0.0418 0.2557 0.96
σ2

u 0.0213 0.2486 0.62

Table 3.5a: Simulation results for Naive 1 with m=10 and moderate error (σ = 0.4)

Bias RMSE CR
β0 0.0090 0.0678 1.00
βx 0.0083 0.0504 1.00
βz 0.0074 0.0780 1.00
βz∗ 0.0059 0.1033 1.00
σ2

u -0.0199 0.1016 0.29

Table 3.5b: Simulation results for Naive 2 with m=10 and moderate error (σ = 0.4)

Bias RMSE CR
β0 0.0006 0.0201 1.00
βx -0.0003 0.0148 1.00
βz 0.0003 0.0228 1.00
βz∗ 0.0002 0.0307 1.00
δ0 -0.0696 0.2221 0.39
δ1 -0.0454 0.1248 0.35
λ0 0.0021 0.0565 0.39
λ1 -0.0151 0.1009 0.38

Table 3.5c: Simulation results for Proposed Method with m=10 and moderate error
(σ = 0.4)

From Tables 3.5a, 3.5b and 3.5c, it is observed that under moderate measurement

errors and 10 number of follow-ups, the Proposed method provides large im-

provement on biases for fixed effect estimates (β0 = 0.0006, βx = −0.0003, βz =

0.0003, βz∗ = 0.0002) than Naive 1 (β0 = 0.0402, βx = 0.2643, βz = −0.1517, βz∗ =
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−0.0418) and moderate improvement than Naive 2 (β0 = 0.0090, βx = 0.0083, βz =

0.0075, βz∗ = −0.0059). These improvement are also true for RMSEs and coverage

rates of 95% CI. In this case, we can also see the smaller amount of biases with

good coverage rates of random effects covariance parameters in comparison with

the 5 number of follow-ups (m = 5).

Bias RMSE CR
β0 0.2444 0.2876 0.64
βx -0.6816 0.6892 0.00
βz -0.1937 0.2650 0.79
βz∗ -0.2646 0.3761 0.78
σ2

u 0.0213 0.2486 0.62

Table 3.6a: Simulation results for Naive 1 with m=10 and severe error (σ = 0.8)

Bias RMSE CR
β0 0.0012 0.0615 1.00
βx 0.0010 0.0483 1.00
βz 0.0006 0.0812 1.00
βz∗ -0.0010 0.0895 1.00
σ2

u -0.0114 0.0931 0.27

Table 3.6b: Simulation results for Naive 2 with m=10 and severe error (σ = 0.8)

The performance of the three methods in the context of the severe measurement

errors and m = 10 is presented in Tables 3.6a, 3.6b and 3.6c. It is clear from the

results that the Proposed approach performs well with small biases and good cov-

erage rates for fixed effects coefficients and random effect covariance coefficients.

Also, the RMSEs show the consistency of the performance as other scenarios. On

the other hand, the Naive 1 method performs poorly with relatively large amount
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Bias RMSE CR
β0 0.0019 0.0192 1.00
βx 0.0011 0.0157 1.00
βz -0.0003 0.0219 1.00
βz∗ -0.0040 0.0294 1.00
δ0 -0.1009 0.2390 0.31
δ1 -0.0521 0.1325 0.32
λ0 0.0006 0.0571 0.35
λ1 -0.0161 0.1130 0.32

Table 3.6c: Simulation results for Proposed Method with m=10 and severe error
(σ = 0.8)

of biases and low coverage rates particularly for the coefficient of measurement

error variable (βx = −0.6816 with 0% coverage rates). The performance of the Pro-

posed method and Naive 2 method are similar in terms of biases but the Proposed

method has much smaller RMSEs. The estimates of GARPs and IVs represent

fairly small biases with good coverage rates and smaller RMSEs compared to the

corresponding values for the 5 number of follow-ups (m = 5).

Overall, based on the simulation results, It is evident that the larger biases can

occur in the fixed effects parameters by ignoring the measurement error in co-

variate and also not specifying the distribution of random effects correctly. The

simulation results also demonstrate that the Proposed approach performs very

well with small biases and RMSEs as well as good coverage rates for 95% CI.

Moreover, as expected, the RMSEs for the all methods tend to decrease when the

number of follow-ups m increases.
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Chapter 4

Application

In this chapter we first provide a brief description of the Manitoba Follow-up

Study (MFUS) data set which is used for the application purpose in the thesis.

The basic description of this study is obtained from an open web-site:

http://www.mfus.ca/index.php.

Moreover detailed description of this study can be found in Tate et al., (2013, 2015).

In section 4.1, we provide a brief description of the MFUS. A detailed background

description of the MFUS data set is given in section 4.2. Section 4.3 includes the

application of the proposed method using the MFUS data set.

4.1 Manitoba Follow-up Study

The Manitoba Follow-up Study (MFUS) is the longest running study of cardiovas-

cular disease and ageing in Canada. It is believed that the MFSU is the only cohort

study in the world which is financed by the members who are being studied. The

MFUS cohort consists of 3983 men who were recruits in the Royal Canadian Air
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Force during the early years of World War II and was established at the University

of Manitoba on July 1, 1948 (Mathewson et al., 1965). Dr. FAL Mathewson was

responsible for the initial physical examination to evaluate the fitness of approx-

imately 7000 male air crew recruits for the Royal Canadian Air Force during

the World War II. The physical examination of these men include general health

assessment, measurement of body weight and blood pressure, medical history of

past illness and recording of an electrocardiogram. After the war, these men were

invited to take part in a longitudinal study to determine their clinical significance.

Thus the seed was planted during the World War II for the MFUS. After the

war, about 10% of the study participants were relocating to the United States or

overseas and rest of the participants returned to residence throughout the Canada.

The mean age of the men in the cohort was around 31 years, with about 90%

between age 20 and 39 years.It was declared that all men were free of clinical

evidence of ischaemic heart disease. The baseline measurement of systolic and

diastolic blood pressure and body mass index (mean ± standard deviation) were

found 121± 10 mmHg, 76± 8 mmHg and 23.8± 2.7kg/m2, respectively (Tate et

al., 2015). The MFUS members were assumed a wide variety of occupations,

with approximately half of the cohort members (∼ 2000) remained involved with

aviation and about half of those (∼ 1000) remaining as career pilots. The other

half began new or renewed civilian occupations (Tate et al., 2015). At present,

MFUS continues with its 68th year of uninterrupted study. In addition to con-

tinued research in cardiovascular health, the current interest has developed in

understanding successful ageing.
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The MFUS protocol involves the regular basis medical examination of each study

member by his physician. Initially the study members were contacted for exami-

nation at 5-years intervals between 1948 to 1963, then 3-years interval between

1964 to 1978, from 1978 to 2003 every year, twice a year from 2004 to 2007 and

since 2007 three times each year (Tate et al., 2015). On July 1, 2013 there were 429

members remained in the study with mean age 92 ± 3.2 years and around 91%

members living in Canada. A comprehensive information of members with their

mean age during calender periods between 1948 and 2013 are described in the

following table (Tate et al., 2015).

Calender period Number of alive Mean ± Standard
at beginning deviation
of the period

July 1, 1948 - -
July 1, 1948 to June 30, 1963 3983 31.1 ± 6.1
July 1, 1963 to June 30, 1978 3786 46.0 ± 5.9
July 1, 1978 to June 30, 1993 3268 60.3 ± 5.2
July 1, 1993 to June 30, 2003 2254 74.2 ± 4.2
July 1, 2003 to June 30, 2013 1287 83.2 ± 3.4

Table 4.1: Description of Manitoba Follow-up Study contacted members during
the calender period

There has been a great contribution by the researchers to understand both cardio-

vascular disease and aging and more than 50 peer-reviewed findings based on

this study have been published in different renowned journals.

55



4.2 Data and Variables

For the purpose of our study, a sub-sample of the MFUS data has been used. For

the selection of sample from MFUS participants, approximately 500 men, 1/8th

of the cohort was chosen. In particular, from the registry file (one record per

MFUS man) a random number in the interval [0, 1] was selected using the ranuni

function in SAS software (SAS Institute Inc., 2003), and the man retained in our

file if < 0.125. The selected people were merged by ID number with the blood

pressure and body weight file, and all measurements recorded between July 1,

1948 and July 1, 2008 were kept. Finally, the data set contains 373 members with

10 first follow-up observations for each member has been used in the analyses.

High blood pressure is an important risk factor for cardiovascular disease and is

one of the major cause of mortality. However, environmental and genetic factors

and their interactions may be the cause for complex disorder disease like high

blood pressure (Kraft et al., 2003). In this work, it is of interest how hypertension

which is based on blood pressure is associated with corresponding risk factors

and how individual measurements vary within subjects. We use the the American

Heart Association guidelines for cut-off points for blood pressure measurements

(AHA, 2003). The cut-off points represent to the clinical classification for hyper-

tension as they relate to the systolic and diastolic blood pressure measurement.

For the purpose of analysis, we divide individuals into two categories: having

hypertension and not having hypertension. An individual is said to have hyper-

tension if his/her systolic blood pressure is greater than 140 mmHg or his/her

diastolic blood pressure is greater than 90 mmHg (Stockwel et al., 1994). The

56



main covariates of interest include age, body mass index (BMI) and ischaemic

heart disease status [IHD: Yes, No (ref)]. An individual is said to have IHD if he

develops IHD in any of his 10 first follow-ups. These covariate are taken into

consideration as they are found to have significant impact on the occurrence of

hypertension in many studies (Stamler 1991; Kaufman et al., 1997; Humayun et

al., 2009; Zhang et al., 2014; Hoque et al., 2014). In particular, there have been

many literatures which show the association between IHD and blood pressure

(Rabkin et al., 1978; Tate et al., 1998).

For this study, July 1, 1948 or the closest date from July 1, 1948 is considered as

the baseline. Based on the baseline information, it is observed that among the

individuals, the mean age is 30.56 years with standard deviation 5.24 and the

minimum and maximum age are 20.20 and 52.56, respectively. The mean BMI

is 23.87 kg/m2 with standard deviation 2.66 kg/m2. It is also noticed that, at

baseline all individuals are IHD free. There are 9.1% individuals have IHD upto

10th follow-up and upto July 1, 2008, 25.64% individuals develop IHD.

In many longitudinal studies, when BMI of a person is reported for a certain age,

the variable of interest for BMI is actually the long term average values of BMI

for that person in that year. BMI is the the ratio of weight (kg) and height (m2)

and weight has a daily as well as seasonal variation. That’s why the true and

observed BMI differ (Abarin et al., 2014). Moreover, since only the overall weight

and height is considered to calculate BMI, there is always an overestimation and

underestimation issue of true BMI. Many literatures show that BMI is subject

to measurement error (Prentice, 1996; Rothman et al., 2008; O’Neil et al., 2013;
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Abarin et al., 2014).

In MFUS, all BMIs are reported by the physicians, however, the BMIs are based on

the follow-up weights and heights from the baseline. It means that the physicians

in the follow-up times only ask for the weights and then report the BMI using

the weights with the heights at the base line. Hence, it can be considered that

there exists a variability of any BMI measurement taken at a specific assessment

time for an individual. In particular, it can be said that the observed BMI may

overestimate the true BMI.

Let the response variable Yij be the binary response, taking 1 if the subject i has

hypertension at assessment j, and 0 otherwise. We can consider the model as

follows:

logit
{

Pij
}
= β0 + β1Ageij + β2BMIi + β3IHDi + uij, (4.1)

i = 1, 2, . . . , 373 and j = 1, 2, . . . , 10,

where Pij = P(Yij = 1|Ageij, BMIi, IHDi, uij) and each individual has 10 visits. It

is assumed that ui = (ui1, . . . , uij) follow a multivariate normal distribution with

mean 0 and covariance matrix Σi.

Here BMIi, representing the true body mass index over time for subject i, which

cannot be observed in practice and is treated as the error-contaminated covariates.

To feature the measurement error variation we employ the following classical

structural measurement error model

BMIij = BMIi + eij,
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where BMIij is the measurement taken for subject i at assessment time point j and

eij’s are assumed to follow independent normal distribution with mean 0 and

variance σ2. Moreover, it is assumed that

BMIi ∼ N(µx, σ2
x).

Figure 4.1: BMI measurements from the MFUS data

The Figure 4.1 represents a histogram of measures of BMI of individuals from the

MFUS data. It shows that the data for BMI is approximately normally distributed.
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4.3 Analysis of Impact of Covariates on Hypertension

We analyse the data with the three approaches - the Proposed approach, Naive 2

approach where constant random effects covariance matrix is considered across

the subjects and Naive 1 approach where measurement errors in covariates are

also ignored. The results for the methods Naive 1 and Naive 2 are reported in

Tables 4.2 and 4.3. In particular, the model parameters estimates, their standard

errors and corresponding 95% confidence intervals for the both Naive methods

are provided. Table 4.4 represents the results from the proposed method using

AR(1) structure of the random effects covariance matrix. The estimates of fixed

effect parameters and GARP and IV parameters associated with random effect

covariance matrix with standard error and 95% confidence interval are reported

(Table 4.4). The GARP and IV parameters are obtained by specifying ki,jt and hi,j

as follows:

ki,j,j−1 = (1, IHDi) and hi,j = (1, IHDi),

and estimated value of Σi is calculated using Σi = T−1
i Di(TT

i )
−1, where Di =

diag(σ2
i1, σ2

i2, . . . , σ2
ini
), with log

(
σ2

ij

)
= hT

i,jλ and Ti is a unit lower triangular

matrix having ones on its diagonal and −φi,jt (φi,jt = kT
i,jtδ) in the (j, t)th position

for 2 ≤ j ≤ 10. Here we specify the following structure for the parameters of

random effects covariance:

φi,jt = δ0 I(|j− t| = 1) + δ1 I(|j− t| = 1)IHDi and

log(σ2
ij) = λ0 + λ1 IHDi (4.2)
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Moreover, the adjusted odds ratio (OR) is used to compare the odd of occurrence of

hypertension with covariates. In logistic regression, estimate of OR for covariates

xij, i = 1, . . . , n; j = 1, . . . , ni, can be obtained as ÔR = exp(β̂ j). The 100(1− α)%

confidence interval for OR is

ÔR± zα/2

√
var(ÔR),

where var(ÔR) =
(
ÔR
)2var(β̂ j) = exp(2β̂ j)var(β̂ j), using the delta method.

The estimated OR and its standard error with 95% confidence interval for the

covariates under the all three methods are given in Tables 4.5, 4.6 and 4.7.

4.3.1 Estimation of Parameters

From Table 4.2 (Naive 1), it can be observed that BMI, age and IHD are positively

associated with the occurrence of hypertension.

β0 βBMI βAge β IHD σ2
u

Estimate -13.718 0.278 0.089 1.227 1.982
SE 0.580 0.021 0.006 0.162 0.046

95% LB -14.855 0.237 0.077 0.909 1.892
95% UB -12.581 0.319 0.101 1.545 2.072

Table 4.2: Estimate, standard error (SE), and lower bound (LB) and upper bound
(UB) 95% CI of model parameters estimate for the method Naive 1

The 95% confidence intervals of these fixed effect estimates indicate the significant

effect of these covariates on hypertension.
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β0 βBMI βAge β IHD σ2
u µx σ2

x σ2

Estimate -13.160 0.269 0.083 1.033 1.959 23.981 6.612 1.380
SE 0.573 0.020 0.006 0.161 0.045 0.042 0.153 0.032

95% LB -14.283 0.230 0.071 0.717 1.871 23.899 6.312 1.317
95% UB -12.037 0.308 0.095 1.349 2.047 24.063 6.912 1.443

Table 4.3: Estimate, standard error (SE), and lower bound (LB) and upper bound
(UB) 95% CI of model parameters estimate for the method Naive 2

Table 4.3 (Naive 2) reveals that BMI is positively associated with the develop-

ment of hypertension and this effect is found to be significant. Age and IHD also

have significant positive effects on the hypertension. Here, the reliability ratio,[
σ2

x
(σ2

x + σ2
e )

]
, is 0.83 which indicates the measure of amount of error associated

with the covariate BMI. Hence, it is clear that there is 17% error associated with

the covariate BMI.

The estimates of GARP and IV parameters in Table 4.4 indicate that the co-

variance matrix varied according to the IHD group. This result demonstrates

that the random effect covariance matrix differs by measured covariates and

neglecting this heterogeneity can cause the biased estimates of mixed effects

(Heagerty and Kurland, 2001). In the estimates of IV, the coefficient of IHD was

found significant which indicates that the estimated IV was higher for those

individuals who have IHD than the individuals without IHD. By following equa-

tion (4.2), the estimated values for D̂ for each group of IHD are logD̂(IHD=0) =

diag (1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56, 1.56) and logD̂(IHD=1) = diag

(3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53).
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Fixed Effect parameters
β0 βBMI βAge β IHD

Estimate -12.089 0.208 0.089 0.561
SE 0.588 0.021 0.005 0.180

95% LB -13.241 0.167 0.079 0.208
95% UB -10.937 0.249 0.099 0.914

Generalized autoregressive
parameters (GARPs: δ)

δ0 δ1(IHD)
Estimate 0.146 -0.111

SE 0.005 0.001
95% LB 0.136 -0.113
95% UB 0.156 -0.109

Innovation Variance
parameters (IVs: λ)

λ0 λ1(IHD)
Estimate 1.561 1.973

SE 0.012 0.012
95% LB 1.537 1.949
95% UB 1.585 1.997

Other Associated parameters
µx σ2

x σ2

Estimate 24.034 6.533 1.380
SE 0.042 0.151 0.032

95% LB 23.952 6.237 1.317
95% UB 24.116 6.829 1.443

Table 4.4: Estimate, standard error (SE), and lower bound (LB) and upper bound
(UB) 95% CI of model parameters estimate for the Proposed method

This demonstrates that the estimated IV parameters vary across the status of IHD.

The coefficient of IHD in the estimates of GARP is also found significant and this

also indicates the substantial variation of GARPs across the status of IHD. As δ̂1

and λ̂1 are statistically significant from zero, the Proposed approach also works

better than assuming the same correlation structural AR(1) for the all subjects

(Naive 2). By following equation (4.2), the estimated values of T̂ for each group of
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IHD are given by

T̂(IHD=0) =

1 0 0 0 0 0 0 0 0 0
0.15 1 0 0 0 0 0 0 0 0

0 0.15 1 0 0 0 0 0 0 0
0 0 0.15 1 0 0 0 0 0 0
0 0 0 0.15 1 0 0 0 0 0
0 0 0 0 0.15 1 0 0 0 0
0 0 0 0 0 0.15 1 0 0 0
0 0 0 0 0 0 0.15 1 0 0
0 0 0 0 0 0 0 0.15 1 0
0 0 0 0 0 0 0 0 0.15 1


,

T̂(IHD=1) =

1 0 0 0 0 0 0 0 0 0
−0.04 1 0 0 0 0 0 0 0 0

0 −0.04 1 0 0 0 0 0 0 0
0 0 −0.04 1 0 0 0 0 0 0
0 0 0 −0.04 1 0 0 0 0 0
0 0 0 0 −0.04 1 0 0 0 0
0 0 0 0 0 −0.04 1 0 0 0
0 0 0 0 0 0 −0.04 1 0 0
0 0 0 0 0 0 0 −0.04 1 0
0 0 0 0 0 0 0 0 −0.04 1


.

The significant estimate of coefficient of BMI indicates that the estimated condi-

tional probability of hypertension given the random effects increases with the

increase of individuals BMI. Also, Age was found significant and we know that

the conditional probability of hypertension increases as Age increases. The relia-

bility ratio for the Proposed method is also 0.82 which indicates the amount of

18% error involvement with the covariate BMI.

The fixed effects estimates for the all three methods reveal the same nature of
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covariates effects on hypertension status, but there exists a variation in the magni-

tudes of the fixed effects for the naive methods compared to the Proposed method,

especially in case of IHD covariate. The naive approaches suggest a significant

positive IHD effect of individuals who have IHD compared to the individuals

without IHD on hypertension status that is nearly more than two times higher

than the proposed method estimate. This might be due to ignoring the hetero-

geneity or temporal dependence on random effect covariance matrix in case of the

naive methods. The estimates of BMI effect are also larger in naive analyses than

the Proposed method. We also observe that the random effect variance estimate

(and its standard error) for the both Naive methods are close to each other, and

the variance of measurement error (σ2) and corresponding mean and variance of

BMI (µx, σ2
x) are also similar for the both Naive 2 and Proposed approaches.

4.3.2 Estimation of Odds Ratio

To examine the association of a covariate with the occurrence of hypertension

controlling other covariates in the model, one may use adjusted OR. The adjusted

OR and its standard error with 95% confidence interval for the covariates under

the three approaches are given in Tables 4.5, 4.6 and 4.7.

From Table 4.5 (Naive 1), it is found that the OR for BMI is 1.320 which implies that

with one unit increase in BMI, the odds of developing hypertension is expected to

increase 32%. It is interesting to observe that the development of hypertension

increases with the increase of Age as well (OR=1.09). In case of IHD, it can be
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OR SE p-value 95% LB 95% UB
BMI 1.320 0.028 0.000 1.266 1.375
Age 1.093 0.007 0.000 1.080 1.106
IHD 3.411 0.553 0.026 2.328 4.494

Table 4.5: Odds ratio (OR), standard error (SE), p-value, lower bound (LB) and
upper bound (UB) of 95% CI of model parameters estimate for the method Naive
1

described that an individual with IHD is 241% more likely to have hypertension

compared to an individual without IHD. Note that all the ORs are statistically

significant as the p-values are less than 0.05.

OR SE p-value 95% LB 95% UB
BMI 1.309 0.026 0.000 1.257 1.360
Age 1.087 0.007 0.000 1.074 1.099
IHD 2.809 0.452 0.022 1.923 3.696

Table 4.6: Odds ratio (OR), standard error (SE), p-value, lower bound (LB) and
upper bound (UB) of 95% CI of model parameters estimate for the method Naive
2

Based on Table 4.6 (Naive 2), it is observed that the estimated OR for BMI is 1.309

with p-value 0.00. It implies that the odds of having hypertension is significantly

increased by 31% with one unit increase of BMI. The OR of age also reveals the

same nature that means with one unit increase in Age, the odds of developing

hypertension is increased by 9%. For the IHD, the OR is 2.809 which means that

the individuals with IHD are 181% more likely to develop hypertension than

the individuals without IHD. Also, we observe that the all three covariates are

statistically significant as their corresponding p-values are less than 0.05.

Same nature can be revealed for BMI, Age and IHD from Table 4.7 (Proposed
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OR SE p-value 95% LB 95% UB
BMI 1.231 0.026 0.000 1.181 1.282
Age 1.093 0.005 0.000 1.082 1.104
IHD 1.752 0.315 0.075 1.134 2.371

Table 4.7: Odds ratio (OR), standard error (SE), p-value, lower bound (LB) and
upper bound (UB) of 95% CI of model parameters estimate for the Proposed
method

method). The OR for BMI indicates the significant increase of odds (1.231) of

developing hypertension with the increase of one unit in BMI. The odds of having

hypertension is expected to increase 9% with one unit increase in Age. For the

IHD, the OR is 1.752 which means that the individuals with the IHD are 75% more

likely to develop hypertension than the individuals without the IHD, and the all

three covariates are statistically significant from zero.
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Chapter 5

Summary and Discussion

There have been considerable research interest in longitudinal data and numerous

methods have been proposed to analyse such data with various features. Covari-

ates measurement error are very common problems in longitudinal data. The

statistical inference will be biased and misleading without the consideration of

the measurement error. Therefore, to obtain the valid statistical inference, it is

important to address the measurement error issue.

The GLMMs are commonly used to analyse longitudinal data. In these mod-

els, it is typically assumed that the random effects covariance matrix is constant

across the subjects. In many situations, however, this correlation structure among

subjects may differ and ignoring this heterogeneity can cause the biased estimates

of fixed effect parameters. To address this, Lee et al. (2012) proposed a hetero-

geneous random effects covariance matrix under the GLMMs ,however, they

assumed that the covariates are error-free. The main contribution of this thesis is

to properly model the random effects covariance matrix under the GLMMs with
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covariates measurement error. For this purpose, we extend the proposed model

by Lee et al. (2012) to model the random effect covariance matrix for the GLMMs

to the case when the covariates are subject to measurement error using modified

Cholesky decomposition. This covariance matrix is decomposed to the GARPs

and IVs parameters and this structure is able to accommodate the heterogeneous

covariance matrix depending on subject-specific covariates.

In Chapter 2, we have given a general framework to model the random effects

covariance matrix via subject-specific covariates for the GLMMs with measure-

ment error covariates and provided a general inference procedure to estimate the

model parameters by exploiting Monte Carlo EM algorithm.

In Chapter 3, simulation studies have been conducted to evaluate the perfor-

mance of the Proposed method over Naive approaches. From our empirical

results, it has been observed that the larger biases can occur in the fixed effects

parameters by ignoring the measurement error in covariates and also not speci-

fying the distribution of random effects correctly. The simulation findings also

demonstrate that the Proposed approach performs very well in terms of small

biases and RMSEs as well as coverage rates of the model parameters estimate.

Moreover, as expected, with the increase of number of follow-ups for each subject,

the RMSEs for the all methods tended to decrease.

An application of the Proposed method has been shown using the MFUS data set

in Chapter 4. Based on the results, it is clear that the random effects covariance

matrix differs by IHD and there exists a variation in the magnitudes of the fixed
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effects for the Proposed method compared to the Naive methods. For the purpose

of our analysis, we considered IHD as a time independent variable. However, in

MFUS data set, IHD is not a time independent variable. In our data application,

the random effects covariance matrix only depended on categorical covariate.

However, the Proposed method can also be applied to the continuous covariates.

The Proposed approach for modelling random effects covariance matrix is also

computationally attractive and provides parameters which have sensible inter-

pretation for modelling trajectories over time. Especially, the dependence and

variability of the random effects can be characterized by the covariance parame-

ters.

In the longitudinal data analysis with covariates measurement error, if the main

interest is the covariance structure or subject-specific prediction, then proper care

needs to be taken in modelling the covariance structure as well as the measure-

ment error. However, taking proper care is important even if these are not the

main or direct interest. As an example, if the random effects covariance matrix is

not modelled correctly when it is function of subject-specific covariates, then the

inference will be incorrect as the standard errors and confidence intervals for the

fixed effects as well as variance components will be incorrect.

It should be noted that in measurement error problem, model identifiability

is an important issue. In case of measurement error, additional data source such

as a validation sub-sample or replicates is needed to perform a measurement error

analysis (Carroll et al., 2006). In longitudinal studies, repeated measurements are
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collected for error-prone variables, and for identifying model parameters these

measurements can be used as replicates. In particular, the parameters of an error

model are often identifiable if the number of repeated assessment of measurement

error covariates is bigger than the number of parameters in the error model (Yi

et al., 2011). If the parameters are not identifiable, then in numerical iterative

procedures, fast divergence can occur. For example, if there is a non-identifiability

problem then the EM algorithm would diverge quickly (Stubbendick and Ibrahim,

2003). Our numerical experience, however, does not indicate that there is an issue

with non-identifiability for the models considered in this thesis.

In the past twenty years significant contributions have been made in the area

of longitudinal data with covariate measurement errors. However, there are

still a lot of interesting and important problems related with this thesis need

to be explored in the future. For example, we can propose our random effects

subject-specific variance-covariance matrix for the marginalized random effects

models as well. Moreover, missing data is a common problem in longitudinal

experiments. Missing data can occur due to various reasons such as the desired

measurements from individuals are not available, lost to follow-ups or otherwise

not taken. As a result, attention has been grown on the analysis of longitudinal

data with covariates measurement error and missing responses/covariates (Liu

and Wu, 2007; Yi et al., 2011; Yi et al., 2012). In the work of Yi et al. (2011), a

general framework was proposed to analyse longitudinal data with covariates

measurement error and missing responses. However, in their work the random

effects covariance matrix is left unspecified. Hence, our proposed approach can be
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extended for the case of both covariates measurement error and missing responses.

Furthermore, in longitudinal studies, measurement of response variables may

contain error due to imperfect measuring system or other reasons. For example,

there always exist some variability in reporting systolic and diastolic blood pres-

sure measurement which can occur because of the digital preference or rounding

the value to higher or lower closest one. As an example, let one individual systolic

blood pressure measurement is 131.2 and it is usual to round this value as 132

or 130 which entails a variability. In case of MFUS data set, it is observed that

on base line in case of systolic blood pressure (SBP), there are 31, 69, 56 and 24

individuals who report SBP as 110, 120, 130 and 140, respectively which indicates

the preference of rounding the value or digital preference. Same scenario can be

observed in case of diastolic blood pressure (DBP), such as, 65, 15, 95, 15, and 31

individuals who report DBP as 70, 75, 80, 85 and 95, respectively which indicates

its variability. Hence, it would be an interesting work to model the random effects

covariance matrix in case of longitudinal data with response measurement error.

In conclusion, in the presence of covariates measurement error in longitudinal

data, incorrectly modelling the random effects covariance matrix has significant

effects on inference in model parameters. Hence, it is important to properly model

the random effects covariance matrix in the presence of covariates measurement

error.
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