• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of meteorological network density on hydrological modeling using input from the Canadian Precipitation Analysis (CaPA)

    Thumbnail
    View/Open
    Abbasnezhadi_Kian.pdf (24.67Mb)
    Date
    2017
    Author
    Abbasnezhadi, Kian
    Metadata
    Show full item record
    Abstract
    The Canadian Precipitation Analysis (CaPA) system has been developed by Environment and Climate Change Canada (ECCC) to optimally combine different sources of information to estimate precipitation accumulation across Canada. The system combines observations from different networks of weather stations and radar measurements with the background information generated by ECCC's Regional Deterministic Prediction System (RDPS), derived from the Global Environmental Multiscale (GEM) model. The main scope of this study is to assess the importance of weather stations when combined with the background information for hydrological modeling. A new approach to meteorological network design, considered to be a stochastic hydro-geostatistical scheme, is proposed and investigated which is particularly useful for augmenting data-sparse networks. The approach stands out from similar approaches of its kind in that it is comprised of a data assimilation component included based on the paradigm of an Observing System Simulation Experiment (OSSE), a technique used to simulate data assimilation systems in order to evaluate the sensitivity of the analysis to new observation network. The proposed OSSE-based algorithm develops gridded stochastic precipitation and temperature models to generate synthetic time-series assumed to represent the 'reference' atmosphere over the basin. The precipitation realizations are used to simulate synthetic observations, associated with hypothetical station networks of various densities, and synthetic background data, which in turn are assimilated in CaPA to realize various pseudo-analyses. The reference atmosphere and the pseudo-analyses are then compared through hydrological modeling in WATFLOOD. By comparing the flow rates, the relative performance of each pseudo-analysis associated with a specific network density is assessed. The simulations show that as the network density increases, the accuracy of the hydrological signature of the CaPA precipitation products improves hyperbolically to a certain limit beyond which adding more stations to the network does not result in further accuracy. This study identifies an observation network density that can satisfy the hydrological criteria as well as the threshold at which assimilated products outperforms numerical weather prediction outputs. It also underlines the importance of augmenting observation networks in small river basins to better resolve mesoscale weather patterns and thus improve the predictive accuracy of streamflow simulation.
    URI
    http://hdl.handle.net/1993/32177
    Collections
    • FGS - Electronic Theses and Practica [24981]
    • Manitoba Heritage Theses [5895]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV