Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation

Loading...
Thumbnail Image
Date
2009-09-08
Authors
Zhao, Shen-Ting
Chen, Ming
Li, Shu-Ji
Zhang, Ming-Hai
Li, Bo-Xing
Das, Manas
Bean, Jonathan C
Kong, Ji-Ming
Zhu, Xin-Hong
Gao, Tian-Ming
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract Background Caspase-independent apoptotic pathways are suggested as a mechanism for the delayed neuronal death following ischemic insult. However, the underlying signalling mechanisms are largely unknown. Recent studies imply the involvement of several mitochondrial proteins, including endonuclease G (EndoG) and Bcl-2/adenovirus E1B 19 kDa-interacting protein (BNIP3), in the pathway of non-neuronal cells. Results In this report, using western blot analysis and immunocytochemistry, we found that EndoG upregulates and translocates from mitochondria to nucleus in a time-dependent manner in cultured hippocampal neurons following oxygen-glucose deprivation (OGD). Moreover, the translocation of EndoG occurs hours before the observable nuclear pyknosis. Importantly, the mitochondrial upregulation of BNIP3 precedes the translocation of EndoG. Forced expression of BNIP3 increases the nuclear translocation of EndoG and neuronal death while knockdown of BNIP3 decreases the OGD-induced nuclear translocation of EndoG and neuronal death. Conclusion These results suggest that BNIP3 and EndoG play important roles in hippocampal neuronal apoptosis following ischemia, and mitochondrial BNIP3 is a signal protein upstream of EndoG that can induce neuronal death.
Description
Keywords
Citation
BMC Neuroscience. 2009 Sep 08;10(1):113