Downward movement of nitrate and phosphorus from hog manures in annual and perennial cropping systems

dc.contributor.authorKarimi Dehkordi, Rezvan
dc.contributor.examiningcommitteeFlaten, Don (Soil Science) Brûlé-Babel, Anita (Plant Science) Schoenau, Jeff (Soil Science, University of Saskatchewan)en_US
dc.contributor.supervisorAkinremi,Wole (Soil Science)en_US
dc.date.accessioned2015-07-09T00:16:11Z
dc.date.available2015-07-09T00:16:11Z
dc.date.issued2015-07-08
dc.degree.disciplineSoil Scienceen_US
dc.degree.levelDoctor of Philosophy (Ph.D.)en_US
dc.description.abstractExcess nitrate-N concentration (>10 mg L-1) in drinking water can cause significant risk to human health. Also, at very low concentration (0.035-0.1 mg P L-1), phosphorus is considered as a pollutant due to its effects of promoting algal growth and eutrophication of surface waters. This thesis’ research was conducted at two different sites. The first study was conducted at Carman on a sandy loam soil with cropping system, perennial versus annual, as the main plot and manure nutrient management system, as the subplot to measure nitrate and phosphorus leaching from hog manures. The second field experiment, located northwest of the town of Carberry, Manitoba, was conducted on a loamy sand soil. A two year rotation was employed for the annual cropping systems with a randomized complete block design. Treatments included two rates of liquid hog manure (LH-5000, LH-2500), two rates of fertilizers (F5000, F2500) corresponding to the amount of available nitrogen in the two rates of hog manure a compost treatment (Com-2500) and a control for a total of six treatments. The results from Carman site showed that while a substantial amount of nitrate-nitrogen was lost from the annual plots (40 to 60 kg ha-1 in 2010 and 23 to 60 kg ha-1 in 2011), a negligible amounts of nitrate was lost from the perennial (< 1 kg ha-1). There was no evidence of significant downward movement of phosphorus below the top 15 cm soil layer in this study. However, repeated, annual application of manure at an N-based rate resulted in increased soil test P. In Carberry, total N leaching of fertilizer amended plots was greater than in plots that received manure. Based on the results, application of liquid hog manure at the rate of 2500 gallon ac-1 was economically and environmentally more desirable and is recommended. We applied the multi-layer water balance model, VSMB, to the data that we generated in the field to gain an understanding of how well the model will simulate the loss of water that we measured from the lysimeters. The simulation study showed that the VSMB model grossly underestimated the amount of leached water, possibly due to an overestimation of evapotranspiration.en_US
dc.description.noteOctober 2015en_US
dc.identifier.urihttp://hdl.handle.net/1993/30617
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectLeachingen_US
dc.subjectNitrateen_US
dc.subjectPhosphorusen_US
dc.subjectLysimeteren_US
dc.subjectCropen_US
dc.titleDownward movement of nitrate and phosphorus from hog manures in annual and perennial cropping systemsen_US
dc.typedoctoral thesisen_US
local.subject.manitobayesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Karimi Dehkordi_Rezvan.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.25 KB
Format:
Item-specific license agreed to upon submission
Description: