The first Dirichlet-Laplacian eigenvalue on polygonal domains

dc.contributor.authorWang, Zhichun
dc.contributor.examiningcommitteeSlevinsky, Mikael (Mathematics)
dc.contributor.examiningcommitteeSmailey, Mohammad (Univ. of Northern BC)
dc.contributor.supervisorCowan, Craig
dc.contributor.supervisorLui, Shaun
dc.date.accessioned2023-08-10T21:11:51Z
dc.date.available2023-08-10T21:11:51Z
dc.date.issued2023-08-03
dc.date.submitted2023-08-04T01:38:58Zen_US
dc.degree.disciplineMathematicsen_US
dc.degree.levelMaster of Science (M.Sc.)
dc.description.abstractThe well-known Faber-Krahn isoperimetric inequality states that among all domains with a given volume, the ball is the minimizer of the first Dirichlet-Laplacian eigenvalue. Therefore, it's natural to make the conjecture that among all polygonal domains with a given area and a given number of sides, the regular polygon minimizes the first eigenvalue. Pólya gave a proof for triangles and quadrilaterals using the technique of Steiner symmetrization, but for polygons with more than 4 sides, this remains an open problem. A review of Pólya's classical proof and of a numerical evaluation by Bogosel and Bucur is given. Furthermore, other approaches related to the eigenvalue optimization problem, including techniques from rearrangement theory, Cheeger theory, and curvature flow theory, are explored.
dc.description.noteOctober 2023
dc.identifier.urihttp://hdl.handle.net/1993/37454
dc.language.isoeng
dc.rightsopen accessen_US
dc.subjectFirst Dirichlet-Laplacian eigenvalue
dc.subjectOptimization on polygons
dc.subjectRearrangement inequalities
dc.subjectCheeger constant
dc.subjectCurvature flow
dc.titleThe first Dirichlet-Laplacian eigenvalue on polygonal domains
dc.typemaster thesisen_US
local.subject.manitobano
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_Zhichun.pdf
Size:
538.61 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
770 B
Format:
Item-specific license agreed to upon submission
Description: