Integrability of magnetic geodesic flows

dc.contributor.authorNaqvi, Syeda Atika Batool
dc.contributor.examiningcommitteeCowan, Craig (Mathematics) Portet, Stephanie (Mathematics)en_US
dc.contributor.supervisorButler, Leo T. (Mathematics)en_US
dc.date.accessioned2020-04-06T20:00:58Z
dc.date.available2020-04-06T20:00:58Z
dc.date.copyright2020-04-01
dc.date.issued2020-03-31en_US
dc.date.submitted2020-04-01T16:45:05Zen_US
dc.degree.disciplineMathematicsen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractThis thesis investigates some aspects of the integrability problem of a Hamiltonian system. The Hamiltonian system with Hamiltonian function H = Xn i,j=1 1 2gij(x1, . . . , xn)pipj , describes the geodesic flow of a Riemannian metric ds2 = Pn i,j=1 gij(x1, . . . , xn)dxidxj on an n-dimensional manifold. Some results from the research article, Polynomials integrals of magnetic geodesic flows on the 2-torus on several energy levels [3], are studied. In particular, a complex structure on the 2-torus is constructed to prove that if the geodesic flow with non-zero magnetic field on the 2-torus admits an additional cubic-in-momenta first integral on two different energy levels, then the magnetic field and the metric are functions of one variable.en_US
dc.description.noteMay 2020en_US
dc.identifier.urihttp://hdl.handle.net/1993/34651
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectMathematicsen_US
dc.titleIntegrability of magnetic geodesic flowsen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Naqvi_Syeda Atika Batool.pdf
Size:
517.35 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: