Evaluation of co-culture sustainability and hydrogen production in an integrated fermentative microbial electrolysis cell

Thumbnail Image
Wrana, Nathan
Journal Title
Journal ISSN
Volume Title
The relationship between the cellulolytic Clostridium termitidis and the electrogenic Geobacter sulfurreducens was evaluated in terms of co-culture sustainability and hydrogen production. Batch co-culture experiments in triplicate balch tubes were conducted using cellobiose as the sole carbon source and fumarate as a terminal electron acceptor. Despite high initial concentrations of acetate, no formate and very low H2 concentrations were detected, supporting the hypothesis that a syntrophic association exists between both bacteria. Co-culture growth characterization experiments were repeated in three microbial electrolysis cells and cellobiose as the sole carbon source. Initially, 9.7 mol-H2 mol-1-glucose was produced. However, a sustainable co-culture could not be maintained despite efforts to reduce reactor temperature and triple the medium’s buffering capacity. Strategies to achieve a sustainable co-culture are to minimize the carbon flux through C. termitidis by using complex substrates, maintain neutral operating conditions, and introduce acetogenic bacteria to control the flux of metabolic intermediates.
Hydrogen, Microbial electrohydrogenesis, Co-culture, Fermentation
Wrana, N., Sparling, R., Cicek, N., and D.B. Levin. (2010). Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. Journal of Cleaner Production. 18(1): S105-S111.