HPP lattice-gas automata for computational electromagnetics

dc.contributor.authorCule, Dinoen_US
dc.date.accessioned2007-05-17T12:34:23Z
dc.date.available2007-05-17T12:34:23Z
dc.date.issued1998-05-01T00:00:00Zen_US
dc.degree.disciplineElectrical and Computer Engineeringen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractA Lattice-Gas Automaton (LGA) is an unconditionally stable discrete system in which particles with a small and finite number of states move about on a regular lattice. The dynamics of this system are governed by a reversible and deterministic rule which is applied to the entire system simultaneously. An LGA is a discreet approximation to molecular dynamics. This study was partially motivated by the possibility of exploiting alternative computer architectures. Using a two-dimensional HPP-LGA model, electromagnetic fields in homogeneous and inhomogeneous media have been simulated on a special-purpose computing device, referred to as a Cellular Automata Machine (CAM-8). The quantitative analysis of an HPP-LGA absorbing boundary condition is presented. Quantitative numerical results for scattering of electric fields from various homogeneous and inhomogeneous regions are provided. For most simulations, comparisons with the Symmetric-Condensed Transmission-Line method (TLM) or analytical solutions are provided. An example of the possible application of HPP-LGA to the analysis of electromagnetic wave interaction with biological media is submitted.en_US
dc.format.extent1218257 bytes
dc.format.extent184 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.identifier.urihttp://hdl.handle.net/1993/1378
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.titleHPP lattice-gas automata for computational electromagneticsen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MQ32912_Cule.pdf
Size:
5.22 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
184 B
Format:
Plain Text
Description: