A numerical study of penalized regression

dc.contributor.authorYu, Han
dc.contributor.examiningcommitteeMandal, Saumen (Statistics) Gao, Jijun (Business Administration)en_US
dc.contributor.supervisorWang, Xikui (Statistics)en_US
dc.date.accessioned2013-08-22T19:37:17Z
dc.date.available2013-08-22T19:37:17Z
dc.date.issued2013-08-22
dc.degree.disciplineStatisticsen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractIn this thesis, we review important aspects and issues of multiple linear regression, in particular on the problem of multi-collinearity. The focus is on a numerical study of different methods of penalized regression, including the ridge regression, lasso regression and elastic net regression, as well as the newly introduced correlation adjusted regression and correlation adjusted elastic net regression. We compare the performance and relative advantages of these methods.en_US
dc.description.noteOctober 2013en_US
dc.identifier.urihttp://hdl.handle.net/1993/22080
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectpenalized regressionen_US
dc.titleA numerical study of penalized regressionen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yu_Han.pdf
Size:
672.76 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.25 KB
Format:
Item-specific license agreed to upon submission
Description: