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Abstract

In this thesis, we review important aspects and issues of multiple linear regression,

in particular on the problem of multi-collinearity.

The focus is on a numerical study of different methods of penalized regression,

including the ridge regression, lasso regression and elastic net regression, as well

as the newly introduced correlation adjusted regression and correlation adjusted

elastic net regression. We compare the performance and relative advantages of

these methods.
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Chapter 1

Introduction

1.1 Regression analysis

Regression analysis is one of the most important tools for analyzing relationships

between one response variable and one or more explanatory variables. It is widely

used in our real lives, including the social and biological sciences, economics and

so on. Regression analysis has became one of the most important data analysis

methods.

The term “regression” was first introduced by Francis Galton (1822-1911). At

that time, regression had only the biological meaning since Galton used “regression”

to describe a biological phenomenon. Later, Udny Yule and Karl Pearson extended

it to a more general statistical context. However, the earliest form of regression

which is called the method of least squares was published by Gauss in 1809. In 1821,

Gauss published a further development of the theory of the least squares, including

a version of the Gauss-Markov theorem. In recent decades, many new regression

methods have been developed, including linear regression, logistic regression and

penalized regression.
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When there is only one explanatory variable corresponding to the response vari-

able, we call it simple regression. For example, if we want to know if there is

enough evidence that the father’s height affects his child’s height, we use the simple

regression. As we see, there is only one explanatory variable which is the father’s

height and one corresponding response variable which is his child’s height. If there

are at least two explanatory variables corresponding to the response variable, we

call it multiple regression. In the previous example, we have to consider not only

the father’s height, but also the mother’s height and the family income. Now, we

have three explanatory variables which are the father’s height, the mother’s height

and family income. The one corresponding response variable is their child’s height.

We see that the simple regression can be regarded as a special case of the multiple

regression.

In the multiple linear regression model, let Y denote the response variable (also

called the endogenous variable or the dependent variable) and X1, X2, · · · , Xp de-

note the explanatory variables (also called exogenous variables or independent vari-

ables ). The relationship between Y and X1, X2, ..., Xp can be expressed as

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

The parameters β0, β1, · · · , βp are called regression coefficients and ε is a random

variable.

Given a data set {yi1, xi1, xi2, · · · , xip}ni=1 of n statistical units, each statistical

unit can be expressed as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, 2, · · · , n. (1.1)
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where yi is the ith response observation, xij is the ith observation on the jth indepen-

dent variable, β0, β1, · · · , βp are the unknown parameters and εi ∼ N(0, σ2
i ). Often,

those above n equations can be rewritten in the matrix form as

Y = Xβ + ε

or

E(Y ) = Xβ,

where

Y =


y1
y2
...
yn

, X =


xT1
xT2
...
xTn

 =


1 x11 · · · x1p
1 x21 · · · x2p
...

. . .
...

1 xn1 · · · xnp

, β =


β0
β1
...
βp

 and ε =


ε1
ε2
...
εn

.

• X is called the design matrix.

• Y is called the response vector.

• β is the parameters vector.

• ε is the error vector.

We plug each individual statistical unit in equation 1.1 to obtain the matrix

form as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi = xTi β + εi,

where xTi =
(
1 xi1 · · · xip

)
and i=1,2,· · · , n.

Assumptions of multiple linear regression model include LINE. That is,
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1. Linearity: the relationship between the explanatory variables and the respond

variable is linear. This is the only restriction on the parameters (not explana-

tory variables), since the explanatory variables are regarded as fixed values.

That is,

• E (yi | xi1, xi2, · · ·xip) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip = xTi β,

• ∂E(yi|xi)
∂xi

= β.

2. Independence: there are two types of independence.

• Each combination of explanatory variable and error is independent.

E(εi | Xj) = 0 for all i = 1, 2, · · · , n and j = 1, 2, · · · , n.

• The error variables are independent. Therefore, Cov(εi, εj) = 0 or equiv-

alently Cov(yi, yj) = 0 for all i 6= j.

3. Normality: the error variables follow normal distributions.

• εi ∼ N(0, σ2
i )

• ε ∼ N(0,σ2)

• Y ∼ N(Xβ,σ2)

where

σ2 =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
. . .

...
0 0 · · · σ2

n

.

4. Equal Variance: each error variable has the same variance.
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• Var(εi) = Var(εj) = σ2 for all i 6= j.

• Var(yi) = Var(yj) = σ2 for all i 6= j.

The ordinary least squares (OLS) is a classic technique to estimate the param-

eters of the multiple linear regression model. There are two principles to establish

the OLS regression model.

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip = xTi β̂ i = 1, 2, · · · , n.

• Firstly,
n∑
i=1

ei =
n∑
i=1

(yi − ŷi) = ε̂Tj = 0,

where

ei = yi − ŷi is called residual of the ith observation.

ε̂T = (e1, e2, · · · , en) and j =


1
1
...
1


n×1

.

• Secondly, ε̂T ε̂ =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2 is minimized.

Here ŷi is an estimator of E(yi) and there is no distribution assumptions required

5



for OLS. Now, in vector form, we have

ε̂T ε̂ =
n∑
i=1

e2i

=
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(yi − xTi β̂)2

= (Y −Xβ̂)T (Y −Xβ̂)

= Y TY − 2Y TXβ̂ + β̂
T
XTXβ̂

Note that Y TXβ̂ = β̂
T
XTY , since they are both numbers.

To find β̂ = (β̂0, β̂1, · · · , β̂p)T that minimizes ε̂T ε̂, we take derivative of ε̂T ε̂ with

respect to β̂ and let the derivative equal to zero to obtain β̂ = (β̂0, β̂1, · · · , β̂p)T .

Then,

∂ε̂T ε̂

∂β̂
= 0− 2XTY + 2XTXβ̂.

Finally, the OLS estimator is

β̂OLS = (XTX)−1XTY ,

where β̂OLS is a best linear unbiased estimator (BLUE). Specifically,

• Best means V ar(β̂OLS) = σ2(XTX)−1 has the minimum variance among all

linear unbiased estimators.
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• The β̂OLS is a linear function of Y . That is, β̂OLS = [(XTX)−1XT ]Y .

• The β̂OLS is an unbiased estimator for β. That is,

E(β̂OLS) = (XTX)−1XTE(Y ) = (XTX)−1XTXβ = β.

Based on the β̂OLS, we can devise an unbiased estimator σ̂2 for σ2, given by

σ̂2 =
1

n− (p+ 1)

n∑
i=1

(yi − xTi β̂)2

=
1

n− (p+ 1)
(Y −Xβ̂)T (Y −Xβ̂)

=
SSE

n− (p+ 1)
,

where (p+ 1) is equal to the number of β
′s. Moreover, E(σ̂2) = σ2.

Maximum likelihood estimator (MLE) is another classic method to estimate the

multiple linear regression model. Under LINE assumptions, the likelihood function

is given by

L(β, σ2) =
n∏
i=1

1√
2πσ2

exp

(
−

(yi − xTi β)2

2σ2

)

=
1

(2πσ2)
n
2

exp

(
−(Y −Xβ)T (Y −Xβ)

2σ2

)

and the log-likelihood function is given by

`(β, σ2) = lnL(β, σ2)

= −n
2
ln(2π)−−n

2
ln(σ2)− 1

2σ2

(
Y −Xβ)T (Y −Xβ

)
.

7



To find β̂ and σ̂2 which maximize the log-likelihood function, let{
∂`(β,σ2)
∂β

= 0
∂`(β,σ2)
∂σ2 = 0

=⇒

{
β̂ML = (XTX)−1XTY

σ̂2
ML = 1

n
(Y −Xβ̂)T (Y −Xβ̂).

As we see, β̂ML is an unbiased estimator which equals to β̂OLS but σ̂2
ML is a biased

estimator of σ2.

1.2 The issue of multi-collinearity

Let B be the independent variables and Ei be the set of all the independent vari-

ables expect variable Xi, Therefore, RY B is the correlation between the dependent

variable Y and the independent variables B, R2
XiEi

is the coefficient of multiple

determination of the independent variable Xi on all other independent variables in

Ei. The standard error of the variable Xi is

Sbi =
Sy
Sx

√
1−R2

Y B

(1−R2
XiEi

)(N − P − 1)
.

Where N is the number of observations and P is the number of coefficients. As we

see, as R2
XiEi
→ ±1, Sbi →∞. This is called the issue of multi-collinearity.

What are the causes of multi-collinearity?

• Some explanatory variables are computed from other explanatory variables.

(e.g. the price of the house and the loan amount are both included in the

explanatory variables.)

• Two or more variables measure the same object. (e.g. weight in pounds and

weight in kilogram are both included in the explanatory variables.)
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• The explanatory variables are truly highly correlated.

What are the consequences of multi-collinearity?

• Increase the estimators’ standard errors.

• Produce confusing or even misleading results.

How do we detect and deal with multi-collinearity?

• Check the correlations between explanatory variables and keep only one ex-

planatory variable in the model if some of the explanatory variables are highly

correlated.

• Calculate the variance inflation factors (VIF 1) and carry out formal multi-

collinearity tests 2.

• Do penalized regression.

1.3 Objectives and scope of research

The objective of this thesis is to compare the numerical results for the penalized

regression methods, which include ridge regression method, lasso regression method,

elastic net regression method, CAR (Correlation Adjusted Regression) method and

CAEN (Correlation Adjusted Elastic Net) regression method. The CAR method

and CAEN method were introduced by Qier Tan (2012).

1V IF = 1
1−R2

i
, where R2

i = is the multiple coefficient of determination in a regression of the

Xi on all other explanatory variables.
2When V IF > 5, the multi-collinearity is high.
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1.4 Structure of the thesis

In Chapter 1, we review the general background of ordinary least squares regression

and explain the issue of multi-collinearity, which is the fundamental purpose of

penalized regression.

In Chapter 2, we give the detailed introduction and explanation of penalized

regression methods, including ridge regression method, lasso regression method,

elastic net regression method, CAR method and CAEN method.

In Chapter 3, we use R to compute the leave one out cross validation (LOOCV )

and the standard deviation of LOOCV for each method. We also compute the

optimal estimator and plot the path of coefficients for each method. Finally, we

give the detailed summary of those penalized regression methods.

In Chapter 4, we summarize the results for this thesis and discuss the future

research questions.

10



Chapter 2

Methods of penalized regression

2.1 Introduction

In a multiple linear regression model, V ar(β̂OLS) = σ2(XTX)−1. When there is

severe multi-collinearity, (XTX)−1 becomes large. This implies that V ar(β̂OLS)

is large. On the other hand, when p � n, matrix X is no longer of full rank.

This implies that β̂OLS is not unique. Based on the above two reasons, penalized

regression have received a great deal of attention in recent years. The penalized

regression can be defined as

β̂PENALTY = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) subject to P (β) ≤ t, (2.1)

or equivalently

β̂PENALTY = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λP (β), (2.2)

where λ is a non-negative regularization parameter. The penalty term P (β) is a

function of the parameters and depends on the method of penalized regression.

11



There is a one to one correspondence between λ and t making the above two equa-

tions equivalent. The intercept is not included in the above models, since we assume

that the data are centered.

There are many different methods of penalized regression, such as ridge regres-

sion, lasso regression and elastic net regression. In this chapter, we would like to

introduce those methods; moreover, there are two new methods called correlation

adjusted regression (CAR) and correlation adjusted elastic net regression (CAEN)

which were introduced by Qier Tan (2012).

2.2 Ridge regression

To detect multi-collinearity issue, Hoerl and Kennard (1970) introduced ridge re-

gression. It’s also called L2 penalized regression. The ridge estimator is defined

as

β̂RIDGE = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) subject to

p∑
i=1

β2
i ≤ t,

or equivalently

β̂RIDGE = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ

p∑
i=1

β2
i

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTβ,

where λ is a non-negative regularization parameter.

We can take derivative of β̂RIDGE with respect to β, since β̂RIDGE is a quadratic

function in β. After taking the derivative of β̂RIDGE with respect to β, the ridge

12



regression estimator can be derived as

β̂RIDGE = (XTX + λI)−1XTY .

• As λ→ 0, β̂RIDGE → β̂OLS.

• As λ→∞, β̂RIDGE → 0.

The variance of the ridge regression estimator is

V ar(β̂RIDGE) = (XTX + λI)−1XTV ar(Y )X(XTX + λI)−1

= (XTX + λI)−1XTX(XTX + λI)−1σ2.

The bias of the ridge regression estimator is

Bias(β̂RIDGE) = E(β̂RIDGE)− β

= (XTX + λI)−1XTXβ − β

= (XTX + λI)−1(XTX + λI − λI)β − β

= −λ(XTX + λI)−1β.

The mean squared error of the ridge regression estimator is

MSE(β̂RIDGE) = trace(V ar(β̂RIDGE)) +BiasT (β̂RIDGE)Bias(β̂RIDGE),

where the trace(V ar(β̂RIDGE)) equal to the sum of the main diagonal elements of

the V ar(β̂RIDGE) matrix.

13



2.3 Lasso regression

Although ridge regression gives us the the prediction performance, it cannot delete

any unnecessary coefficients. Tibshirani (1996), introduced the least absolute shrink-

age and selection operator (LASSO) regression method. It’s also called L1 penalized

regression. The name “LASSO” stands not only for shrinkage, but also does the

variable selection. Since lasso regression does both continuous shrinkage and vari-

able selection, it has received a great deal of attention in recent years. The lasso

estimator is defined as

β̂LASSO = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) subject to

p∑
i=1

|βi| ≤ t,

or equivalently

β̂LASSO = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ

p∑
i=1

|βi| ,

where λ is a non-negative regularization parameter.

• As λ→ 0, β̂LASSO → β̂OLS.

• As λ→∞, β̂LASSO → 0.

Since the lasso penalty term is no longer quadratic, there is no explicit formula

for the mean squared error of the lasso estimator 1. Generally, Bias(β̂LASSO) in-

creases as the tuning parameter λ increases. However, V ar(β̂LASSO) decreases as

the tuning parameter λ increases. What are the Bias(β̂LASSO), V ar(β̂LASSO) and

MSE(β̂LASSO) at the extreme values?

1Efron et al. (2004) introduced LARS to solve lasso regression.
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• When λ = 0, we have

{
Bias(β̂LASSO) = Bias(β̂OLS) = 0

V ar(β̂LASSO) = V ar(β̂OLS).

• When λ→∞, we have

{
Bias(β̂LASSO)→ 0− β = −β
V ar(β̂LASSO)→ V ar(0) = 0.

Finally, when λ = 0,

MSE(β̂LASSO) = trace(V ar(β̂LASSO)) +BiasT (β̂LASSO)Bias(β̂LASSO)

= trace(V ar(β̂OLS)) + 0

= MSE(β̂OLS),

and when λ→∞,

MSE(β̂LASSO) = trace(V ar(β̂LASSO)) +BiasT (β̂LASSO)Bias(β̂LASSO)

→ 0 + (−β)T (−β) = βTβ.

Since BiasT (β̂LASSO)Bias(β̂LASSO) and trace(V ar(β̂LASSO)) move to opposite

directions as the tuning parameter λ increases, we can choose the optimal parameter

λ to make MSE(β̂LASSO) minimized theoretically.

The properties of lasso regression can be described as:

• Lasso regression does both continuous shrinkage and variable selection.

• For p > n, the lasso regression method selects at most n variables.

• For highly correlated explanatory variables, the lasso regression method only

selects one variable among those highly correlated explanatory variables.

15



2.4 Elastic net regression

Zou and Hastie (2005) introduced elastic net regression which is a combination of

L1 penalized regression and L2 penalized regression. The elastic net estimator is

defined as

β̂EN = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

β2
i

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
Tβ,

where λ1 and λ2 are non-negative regularization parameters.

• As λ1 → 0, β̂EN → β̂RIDGE.

• As λ2 → 0, β̂EN → β̂LASSO.

What’s the behavior of β̂EN at λ1 → ∞ or λ2 → ∞? According to the ridge

regression and lasso regression we have proved before, the amount of shrinkage

increases as λ increases. This implies that when either λ1 → ∞ or λ2 → ∞, we

have β̂EN → 0. Since the lasso penalty term is included in β̂EN , there is no explicit

formula of the mean squared error for the elastic net estimator except when λ1 = 0.

What is the MSE(β̂EN) at each combination of extreme values?

• When

{
λ1 = 0

λ2 = 0
, we have MSE(β̂EN) = MSE(β̂OLS).

• When

{
λ1 = 0

λ2 6= 0
, we have MSE(β̂EN) = MSE(β̂RIDGE).
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• When

{
λ1 6= 0

λ2 = 0
, we have MSE(β̂EN) = MSE(β̂LASSO).

• When λi →∞, we have MSE(β̂EN)→ βTβ, for i = 1 or 2.

What’s the process of elastic net regression when λ1 6= 0 and λ2 6= 0? We fixed

λ2 first, then do the elastic net regression to determine the optimal λ1. Finally, we

choose the optimal combination of λ1 and λ2 based on the smallest MSE(β̂EN).

Due to quadratic regularization, the solution paths of elastic net regression are more

stable than the solution paths of lasso regression. So elastic net regression can be

regarded as a stabilized version of the lasso regression.

2.5 Correlation adjusted regression

Tan (2012) introduced the correlation adjusted regression (CAR). It’s an extension

of ridge regression. There are two types of correlation adjusted regression.

The 1st type correlation adjusted estimator can be defined as

β̂CAR1
= arg min

β∈Rp
(Y −Xβ)T (Y −Xβ) + λ[

p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p ]

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTW 1β

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTDT
1D1β,

17



where λ is a non-negative regularization parameter and

D1 =


1 −r1,2 0 · · · 0 0
0 1 −r2,3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −rp−1,p
0 0 0 · · · 0 1

 .

The ri,j is the sample correlation between the predictor variables xi and xj. When

ri,i+1 = 0 for all i = 1, 2, · · · , p− 1, we have CAR1 = RIDGE.

The 2nd type correlation adjusted estimator can be defined as

β̂CAR2
= arg min

β∈Rp
(Y −Xβ)T (Y −Xβ) + λ[

p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p ]

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTW 2β

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTDT
2D2β,

where λ is a non-negative regularization parameter and

D2 =



1 −r1,2 0 0 · · · 0 0
1 0 −r1,3 0 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −r1,p
0 1 −r2,3 0 · · · 0 0
0 1 0 −r2,4 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −r2,p
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −rp−1,p
0 0 0 0 · · · 0 1



.

The ri,j is the sample correlation between the predictor variables xi and xj.
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Finally, the correlation adjusted estimator can be defined as

β̂CAR = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTWβ

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λβTDTDβ,

where W either is W 1 or W 2 and WK = DT
KDK for K = 1, 2. When W = I,

CAR = RIDGE. So ridge regression can be regarded as a special version of CAR.

We can take derivative of β̂CAR with respect to β, since β̂CAR is a quadratic

function in β. After taking the derivative of β̂CAR with respect to β, the correlation

adjusted estimator can be derived as

β̂CAR = (XTX + λW )−1XTY .

• As λ→ 0, β̂CAR → β̂OLS.

• As λ→∞, β̂CAR → 0.

The variance of the correlation adjusted estimator is

V ar(β̂CAR) = (XTX + λW )−1XTV ar(Y )X(XTX + λW )−1

= (XTX + λW )−1XTX(XTX + λW )−1σ2.

The bias of the correlation adjusted estimator is

Bias(β̂CAR) = E(β̂CAR)− β

= (XTX + λW )−1XTXβ − β

= (XTX + λW )−1(XTX + λW − λW )β − β

= −λ(XTX + λW )−1Wβ.
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The mean squared error of the correlation adjusted estimator is

MSE(β̂CAR) = trace(V ar(β̂CAR)) +BiasT (β̂CAR)Bias(β̂CAR),

where the trace(V ar(β̂CAR)) equal to the sum of the main diagonal elements of the

V ar(β̂CAR) matrix.

Given the Cholesky’s decomposition W = CCT and for any λ > 0, define

X∗ =
1√

1 + λ

(
X√
λCT

)
, Y ∗ =

(
Y
0

)
, β∗ =

√
1 + λβ.

Tan (2012) proved that minimizing

OLS∗ = (Y ∗ −X∗β∗)T (Y ∗ −X∗β∗)

is equivalent to minimizing

(Y −Xβ)T (Y −Xβ) + λβTWβ = CAR.

Proof.
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OLS∗ =

n+p∑
i=1

(y∗i − x∗iβ∗)2

= (Y ∗ −X∗β∗)T (Y ∗ −X∗β∗)

= [(Y ∗)T − (β∗)T (X∗)T ][Y ∗ −X∗β∗]

= (Y ∗)TY ∗ − (Y ∗)TX∗β∗ − (β∗)T (X∗)TY ∗ + (X∗β∗)TX∗β∗

=
(
Y T 0

)(Y
0

)
−
(
Y T 0

) 1√
1 + λ

(
X√
λCT

)√
1 + λβ

−
√

1 + λβT
1√

1 + λ

(
XT
√
λC
)(Y

0

)

+
√

1 + λβT
1√

1 + λ

(
XT
√
λC
) 1√

1 + λ

(
X√
λCT

)√
1 + λβ

= Y TY − Y TXβ − βTXTY + βT (XTX + λCCT )β

= (Y −Xβ)T (Y −Xβ) + λβTWβ

= CAR.

2.6 Correlation adjusted elastic net regression

Tan (2012) introduced the correlation adjusted elastic net regression (CAEN) which

is a combination of L1 penalized regression and CAR. It’s also an extension of elastic

net regression. There are two types of correlation adjusted elastic net regression.
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The 1st type of correlation adjusted elastic net estimator can be defined as

β̂CAEN1
= arg min

β∈Rp
(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|

+ λ2[

p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p ]

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TW 1β

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TDT

1D1β,

where λ1 and λ2 are non-negative regularization parameters and

D1 =


1 −r1,2 0 · · · 0 0
0 1 −r2,3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −rp−1,p
0 0 0 · · · 0 1

 .

The ri,j is the sample correlation between the predictor variables xi and xj. When

ri,i+1 = 0 for all i = 1, 2, · · · , p− 1, we have CAEN1 = EN.
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The 2nd type of correlation adjusted elastic net estimator can be defined as

β̂CAEN2
= arg min

β∈Rp
(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|

+ λ2[

p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p ]

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TW 2β

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TDT

2D2β,

where λ1 and λ2 are non-negative regularization parameters and

D2 =



1 −r1,2 0 0 · · · 0 0
1 0 −r1,3 0 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −r1,p
0 1 −r2,3 0 · · · 0 0
0 1 0 −r2,4 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −r2,p
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −rp−1,p
0 0 0 0 · · · 0 1



.

The ri,j is the sample correlation between the predictor variables xi and xj.
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Finally, the correlation adjusted elastic net estimator can be defined as

β̂CAEN = arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TWβ

= arg min
β∈Rp

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TDTDβ.

• As λ1 → 0, β̂CAEN → β̂CAR.

• As λ2 → 0, β̂CAEN → β̂LASSO.

The W either be W 1 or W 2 and WK = DT
KDK for K = 1, 2. When W = I,

CAEN = EN . So elastic net regression can be regarded as a special version of

CAEN .

The behavior of β̂CAEN at λ1 → ∞ or λ2 → ∞ is similar to that of β̂EN .

According to the CAR regression and lasso regression we proved before, the amount

of shrinkage increases as λ increases. This means that when either λ1 →∞ or λ2 →

∞, we have β̂CAEN → 0. Since the lasso penalty term is included in β̂CAEN , there

is no explicit formula of the mean squared error for the correlation adjusted elastic

net estimator except when λ1 = 0. What is MSE(β̂CAEN) at each combination of

extreme values?

• When

{
λ1 = 0

λ2 = 0
, we have MSE(β̂CAEN) = MSE(β̂OLS).

• When

{
λ1 = 0

λ2 6= 0
, we have MSE(β̂CAEN) = MSE(β̂CAR).
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• When

{
λ1 6= 0

λ2 = 0
, we have MSE(β̂CAEN) = MSE(β̂LASSO).

• When λi →∞, we have MSE(β̂CAEN)→ βTβ, for i=1 or 2.

What is the process of correlation adjusted elastic net regression when λ1 6= 0 and

λ2 6= 0? We fixed λ2 first, then do the CAEN regression to determine the optimal

λ1. Finally, we choose the optimal combination of λ1 and λ2 based on the smallest

MSE(β̂CAEN). Due to quadratic regularization, the solution paths of CAEN are

more stable than the solution paths of lasso regression. So CAEN can also be

regarded as a stabilized version of the lasso regression.

Given the Cholesky’s decomposition W = CCT and for any λ1, λ2 > 0, define

X∗ =
1√

1 + λ2

(
X√
λ2C

T

)
, Y ∗ =

(
Y
0

)
, β∗ =

√
1 + λ2β, γ =

λ1√
1 + λ2

.

Tan (2012) proved that minimizing

LASSO∗ = (Y ∗ −X∗β∗)T (Y ∗ −X∗β∗) + γ

p∑
i=1

|β∗i |

is equivalent to minimizing

(Y −Xβ)T (Y −Xβ) + λ1

p∑
i=1

|βi|+ λ2β
TWβ = CAEN.
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Proof.

LASSO∗ = (Y ∗ −X∗β∗)T (Y ∗ −X∗β∗) + γ

p∑
i=1

|β∗i |

= OLS∗ + γ

p∑
i=1

|β∗i |

= CAR + λ1

p∑
i=1

|βi|

= (Y −Xβ)T (Y −Xβ) + λ2β
TWβ + λ1

p∑
i=1

|βi|

= CAEN.

2.7 Summary

When there exists multi-collinearity, the ordinary least squares (OLS) regression

may produce large variance based on (XTX)−1 and contribute to MSE(β̂OLS).

This causes our model very unstable or highly variable.

By shrinking the coefficients, ridge regression reduces the variability. It releases

a little bias in exchange for reduced variability. Ridge regression shrinks the coeffi-

cients towards zero simultaneously. If there are many predictors in the model, ridge

regression cannot provide a sparse model which can be easily interpreted.

The lasso regression reduces the variability by shrinking the coefficients toward

zero and shrinks some coefficients to exactly zero. It makes up the disadvantage

of ridge regression but still have some limitations. For p > n, the lasso regression
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selects at most n variables. When there exists high correlations among explana-

tory variables, the lasso only selects one explanatory variable among those highly

correlated explanatory variables. Lasso does not perform group variable selection.

The elastic net regression makes up the disadvantage of ridge regression and lasso

regression. It does shrinkage, variable selection and group variable selection. Elastic

net regression is a better method than both ridge regression and lasso regression.

The correlation adjusted regression is an extension of ridge regression. The

behavior of the correlation adjusted regression is similar with ridge regression. The

sample correlation is included in the penalty term. After applying argumentation

to the data set, the correlation adjusted regression can be reduced to the ordinary

least squares regression.

The correlation adjusted elastic net regression is an extension of elastic net

regression. The behavior of the correlation adjusted elastic net regression is similar

with elastic net regression. The sample correlation is also included in the penalty

term. After applying argumentation to the data set, the correlation adjusted elastic

net regression can be reduced to the lasso regression.
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Chapter 3

A numerical comparison of

penalization methods

In this chapter, we perform numerical study of the penalized regression methods. We

use the diabetes data frame 1 which includes 442 rows and 11 columns. Those 442

rows come from the 442 patients and those 11 columns correspond to 10 independent

variables and 1 dependent variable.

3.1 Introduction

The mean square error (MSE) of an estimator β̂ of a parameter β is defined as

MSE(β̂) = E[(β̂ − β)2]

= V ar(β̂) + [bias(β̂)]2.

As we see, V ar(β̂) measures the variability of the estimator and bias(β̂) measures

the bias. Therefore, to find a good estimator we need to find the estimator with

1The data set is available at: http://www.stanford.edu/ hastie/Papers/LARS/diabetes.data
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Figure 3.1: trade-off relationships

the smallest mean square error. There is a trade-off between V ar(β̂) and [bias(β̂)]2.

This implies that we can increase a little bias of the estimator in exchange of a large

decrease in the variance. After adjustment, the model may bias a little bit but is

more stable.

Figure 3.1 2shows the trade-off relationship between V ar(β̂) and [bias(β̂)]2. This

implies the simple model with high bias and low variance. However, the complex

model has low bias and high variance.

3.2 Methods

In the last chapter, we have discussed that there is no explicit formula for the mean

square error whenever the lasso penalty term is included in P (β). How do we select

the best λ? There are several criteria available for selecting the best λ, such as the

2This graph is available at: http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bayesian Information Criterion (BIC), Alkaike Information Criterion (AIC) and

Leave-One-Out Cross Validation (LOOCV ) criterion. In this thesis, we will use the

leave one out cross validation criterion.

Suppose there are n observations. If the ith row observation (yi, xi1, xi2, · · · , xip)

is removed from the data set, define the X matrix without the ith row as X(i) and

the Y matrix without ith element as Y(i). For i = 1, 2, · · · , n, obtain β̂(n−1) using

X(i) and Y(i), then the prediction error square for (yi, xi1, xi2, · · · , xip) is

CV−i(λ) = (yi −Xiβ̂(n−1))
2

= (yi −
p∑
j=1

xijβ̂(n−1))
2, i = 1, 2, · · · , n.

Finally, the LOOCV is

CV (λ) =
1

n

n∑
i=1

CV−i(λ).

The standard deviation of the LOOCV is

SCV (λ) =

√√√√ 1

n− 1

n∑
i=1

[CV−i(λ)− CV (λ)]2.

Our target is to find the λCVoptimal
that makes both CV (λ) and SCV (λ) optimal

which means being as small as well. Then we use the λCVoptimal
to obtain the

penalized estimators.
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3.3 Numerical results and explanation

All the simulations are computed by R. There are five types of penalized regres-

sion included in this thesis (ridge regression, lasso regression, elastic net regression,

correlation adjusted regression and correlation adjusted elastic net regression).

3.3.1 Preliminary material

To reduce the error of the least square estimation and omit β0, we standardize our

data frame. The original data frame are displayed as follows 3:

Table 3.1: original data frame

age sex bmi · · · tch ltg glu y
1 59.00 2.00 32.10 · · · 4.00 4.86 87.00 151.00
2 48.00 1.00 21.60 · · · 3.00 3.89 69.00 75.00
3 72.00 2.00 30.50 · · · 4.00 4.67 85.00 141.00
...

...
...

... · · · ...
...

...
...

440 60.00 2.00 24.90 · · · 3.77 4.13 95.00 132.00
441 36.00 1.00 30.00 · · · 4.79 5.13 85.00 220.00
442 36.00 1.00 19.60 · · · 3.00 4.60 92.00 57.00

E(column) 48.518 1.468 26.376 · · · 4.070 4.641 91.260 152.134
Scolumn 13.109 0.500 4.418 · · · 1.290 0.522 11.496 77.093

where E(column) equal to the mean of the variables and Scolumn equal to the

standard deviation of the variables. For each observation, we subtract its column

mean and divide by its column standard deviation. The standardized data frame

are displayed as follows:

3Based on Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) “Least
Angle Regression.”, the 10 independent variables’ name are age, sex, body mass index, aver-
age blood pressure, and six blood serum measurements. The response variable is a quantitative
measure of disease progression one year after baseline.

31



Table 3.2: standardized data frame

age sex bmi map tc ldl hdl tch ltg glu y
1 0.80 1.06 1.30 0.46 -0.93 -0.73 -0.91 -0.05 0.42 -0.37 -0.01
2 -0.04 -0.94 -1.08 -0.55 -0.18 -0.40 1.56 -0.83 -1.43 -1.94 -1.00
3 1.79 1.06 0.93 -0.12 -0.96 -0.72 -0.68 -0.05 0.06 -0.54 -0.14
...

...
...

...
...

...
...

...
...

...
...

...
440 0.88 1.06 -0.33 0.36 -0.78 -0.29 -0.52 -0.23 -0.98 0.33 -0.26
441 -0.95 -0.94 0.82 0.03 0.34 0.32 -0.60 0.56 0.94 -0.54 0.88
442 -0.95 -0.94 -1.53 -1.71 1.76 0.58 3.65 -0.83 -0.09 0.06 -1.23

Since the purpose of investigating the penalized estimator behavior is to compare

with the ordinary least squares estimator, we give the detailed numerical results and

explanation of β̂OLS.

Firstly, we calculate the numerical results by the ordinary least squares regres-

sion method using our data set.

Table 3.3: ordinary least squares regression

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0000 0.0334 -0.00 1.0000

age -0.0062 0.0369 -0.17 0.8670
sex -0.1481 0.0378 -3.92 0.0001

bmi 0.3211 0.0411 7.81 0.0000
map 0.2004 0.0404 4.96 0.0000

tc -0.4893 0.2574 -1.90 0.0579
ldl 0.2945 0.2094 1.41 0.1604

hdl 0.0624 0.1313 0.48 0.6347
tch 0.1094 0.0997 1.10 0.2735
ltg 0.4641 0.1062 4.37 0.0000
glu 0.0418 0.0408 1.02 0.3060

Residual standard error: 0.7025 on 431 degrees of freedom

Multiple R-squared: 0.5177, Adjusted R-squared: 0.5066

F-statistic: 46.27 on 10 and 431 DF, p-value: < 2.2e-16.
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Table 3.3 gives the estimated parameters, standard deviations, t-values and cor-

responding p-values. We also calculate the
∑p

i=1 |βi| = 2.137,
∑p

i=1 β
2
i = 0.724 and

LOOCV = 0.505, which can be used to compare with other penalized regressions

later. Since β̂OLS is an unbiased estimator of β and excluding λ, the LOOCV is

just a constant. Actually, we can calculate the mean square errors of β̂OLS directly.

However, we want to use the same method (LOOCV ) to compare with the penalized

methods.

Secondly, we calculate the correlation matrix and obtain D1 and D2 which are

used in CAR and CAEN .

Table 3.4: correlation matrix among independent variables

age sex bmi map tc ldl hdl tch ltg glu
age 1.00 0.17 0.19 0.34 0.26 0.22 -0.08 0.20 0.27 0.30
sex 0.17 1.00 0.09 0.24 0.04 0.14 -0.38 0.33 0.15 0.21

bmi 0.19 0.09 1.00 0.40 0.25 0.26 -0.37 0.41 0.45 0.39
map 0.34 0.24 0.40 1.00 0.24 0.19 -0.18 0.26 0.39 0.39

tc 0.26 0.04 0.25 0.24 1.00 0.90 0.05 0.54 0.52 0.33
ldl 0.22 0.14 0.26 0.19 0.90 1.00 -0.20 0.66 0.32 0.29

hdl -0.08 -0.38 -0.37 -0.18 0.05 -0.20 1.00 -0.74 -0.40 -0.27
tch 0.20 0.33 0.41 0.26 0.54 0.66 -0.74 1.00 0.62 0.42
ltg 0.27 0.15 0.45 0.39 0.52 0.32 -0.40 0.62 1.00 0.46
glu 0.30 0.21 0.39 0.39 0.33 0.29 -0.27 0.42 0.46 1.00
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D1 =


1 −r1,2 0 · · · 0 0
0 1 −r2,3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −rp−1,p
0 0 0 · · · 0 1



=


1 −0.17 0 · · · 0 0
0 1 −0.09 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −0.46
0 0 0 · · · 0 1

 ,
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and

D2 =



1 −r1,2 0 0 · · · 0 0
1 0 −r1,3 0 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −r1,p
0 1 −r2,3 0 · · · 0 0
0 1 0 −r2,4 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −r2,p
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −rp−1,p
0 0 0 0 · · · 0 1



=



1 −0.17 0 0 · · · 0 0
1 0 −0.19 0 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −0.30
0 1 −0.09 0 · · · 0 0
0 1 0 −0.24 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −0.21
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −0.46
0 0 0 0 · · · 0 1



.

Thirdly, for the correlation adjusted regression (CAR) and the correlation ad-

justed elastic net regression (CAEN), we use the OLS and the LASSO to calculate

the numerical results. We update the data set and calculate the Cholesky’s decom-

position W = CCT .

Finally, we introduce the R package which is called glmnet 4(Authors: Jerome

Friedman, Trevor Hastie and Rob Tibshirani). Most of those numerical results are

4This package is available at: http://cran.r-project.org/web/packages/glmnet/index.html
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calculated by this package. This package defines the penalized term as

Pλ(β) = λPα(β)

= λ

p∑
i=1

[
1

2
(1− α)β2

i + α |βi|],

• α = 1 → lasso method,

• α = 0 → ridge regression method,

• 0 < α < 1 → elastic net regression method.
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3.3.2 Ridge regression
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Figure 3.2: ridge LOOCV plot

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

1
0.

0
0.

1
0.

2
0.

3

L1 Norm
C

oe
ffi

ci
en

ts

10 10 10 10 10 10 10

Figure 3.3: coefficients path

Figure 3.2 gives the relationship between lnλ and LOOCV . The integer numbers

at the top of this graphic show the number of non-zero estimators in the model.

The left line gives the smallest LOOCV and the right line gives the less complex

model. We can pick up any λ between the left line and the right line.

Table 3.5: ridge numerical results

λ LOOCV Std. Error
∑p

i=1 β
2
i

585.786 0.9973818 0.05012704 0
16 0.8677504 0.04402528 0.00383
2 0.6180950 0.03296649 0.05699633
1 0.5596442 0.03080430 0.09978268

0.5 0.5051091 0.03104667 0.2691374
0.02 0.5050562 0.03129740 0.3104395
0.01 0.5049250 0.03138451 0.3653977

0 0.5050890 0.03152150 0.7239687
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Based on the result from Table 3.5, either λ = 0.01 or λ = 0.02 is our opti-

mal value. λ = 0.01 gives the smaller LOOCV , but λ = 0.02 gives the smaller

Std.Error 5. Finally, we plot the path of the coefficient 6. As we see from Figure

3.3, the optimal ridge estimators are at the intersections of the vertical line and

each coefficient path. The ridge regression only does the variables shrinkage but

not the variable selection where L1 norm equal to
∑p

i=1 |βi|.

5It’s the standard error of LOOCV and the smaller standard error gives the less complex model.
6For each coefficient path line, the variables from top to bottom are: ltg, bmi, ldl, map, tch,

hdl, glu, age, sex and tc. They are in the same order for other methods of coefficients path.

38



3.3.3 Lasso regression
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Figure 3.4: lasso LOOCV plot
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Figure 3.5: coefficients path

Figure 3.4 gives the relationship between lnλ and LOOCV . The integer numbers

at the top of this graphic show the number of non-zero estimators in the model.

The left line gives the smallest LOOCV with 7 variables in the model and the right

line gives smallest standard deviation with only 4 variables in the model. We can

pick any λ between the left line and the right line.

Table 3.6: lasso numerical results

λ LOOCV Std. Error
∑p

i=1 |βi| Df
58.579× 10−2 1.003 0.0504 0 0
10.00× 10−2 0.538 0.0303 0.734 4

1.292 × 10−2 0.504 0.0309 1.178 7
0.614× 10−2 0.504 0.0312 1.267 8
0.096× 10−2 0.504 0.0314 1.748 9
0.038× 10−2 0.505 0.0315 1.917 10
0.018× 10−2 0.505 0.0315 2.007 10

Based on Table 3.6, when λ = 1.292×10−2, both LOOCV and Std.Error are at
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minimum and there are 7 variables included in the model. Since the lasso regression

does the variable selection, we also indicate the number of non-zero variables in the

model which is called Df . Finally, we plot the path of the coefficients. As we see

from Figure 3.5, the optimal lasso estimators are at the intersections of the vertical

line and each coefficient path. The lasso regression does not only the estimators’

shrinkage but also variable selection.

Figure 3.6: sequence of lasso moves

Sequence of LASSO moves:
bmi ltg map hdl sex glu tc tch ldl age hdl hdl

Var 3 9 4 7 2 10 5 8 6 1 -7 7
Step 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.6 shows the sequence of lasso moves. In each step, either one variable is

added (with a positive number) or one variable is deleted (with a negative number).
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3.3.4 Elastic net regression
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Figure 3.7: elastic net LOOCV
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Figure 3.8: coefficients path

Since Pα(β) =
∑p

i=1[
1
2
(1−α)β2

i +α |βi|], let αi = i
100
−0.01 for i = 1, 2, · · · , 101.

That is, α1 = 0, α2 = 0.01, α3 = 0.02, · · · , α101 = 1. For each αi, we do the

elastic net regression and keep the smallest LOOCVi. Finally, we use the minimum

LOOCV among those 101 LOOCV ′s to determine the value of α.

Figure 3.9: α and corresponding smallest LOOCV

alpha and corresponding smallest CV:
alpha= 0 0.05 0.16 ... 0.48 ... 1
smallest CV 0.50513 0.50398 0.50341 ... 0.50383 ... 0.50375

Based on Figure 3.9, α17 = 0.16 gives the smallest LOOCV = 0.50341. Then

we do the elastic net regression with α = 0.16 and obtain the detail of numerical

results. Since the elastic net regression does the variable selection, we show the

number of non-zero variables in the model which is called Df .
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Table 3.7: elastic net numerical results

λ LOOCV Std.Error Pα(β) Df
3.6611 1.0024 0.0504 0 0
1.5848 0.7482 0.0383 0.0563 6
0.6251 0.5803 0.0313 0.1372 6
0.0264 0.5034 0.0310 0.3202 8
0.0037 0.5051 0.0314 0.4505 10
0.0004 0.505 0.0315 0.5367 10

Based on Table 3.7, when λ = 0.0264, both LOOCV and Std.Error are at

minimum and there are 8 variables included in the model.

Figure 3.7 gives the relationship between lnλ and LOOCV . The integer numbers

at the top of this graphic show the number of non-zero estimators in the model.

The left line gives the smallest LOOCV with 8 variables in the model and the right

line gives the smallest standard deviation with only 7 variables in the model. We

can pick any λ between the left line and the right line. Finally, we plot the path of

the coefficients. As we see from Figure 3.8, the optimal elastic net estimators are

at the intersections of the vertical line and each coefficient path. The elastic net

regression does not only the estimators’ shrinkage but also variable selection.
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3.3.5 Correlation adjusted regression

Figure 3.10: CAR coefficients path
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Since minimizing OLS∗ = (Y ∗−X∗β∗)T (Y ∗−X∗β∗) is equivalent to minimiz-

ing (Y −Xβ)T (Y −Xβ) + λβTWβ = CAR, we calculate the numerical results

by ordinary least squares regression method using the updated data set.

Let λi = i
100
− 0.01 for i = 1, 2, · · · , 1001. That is, λ1 = 0, λ2 = 0.01, λ3 = 0.02,
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· · · , λ1001 = 10. For each λi, we update the data set and calculate the LOOCV .

For each ordinary least squares regression, the LOOCV is a constant. Finally, we

pick the optimal value based on the LOOCV and Std.Error.

Table 3.8: CAR1 numerical results

λCARLS1 LOOCV Std.Error βTW1β
15 0.5145330 0.03143519 0.226623

11.32 0.5125900 0.0314135 0.2351756
0.05 0.5051369 0.03171106 0.9926207
0.03 0.5051079 0.03171519 1.011528
0.02 0.5050914 0.03171711 1.020666
0.01 0.5050766 0.03171921 1.029955

0 0.5050625 0.03172138 1.039399

Based on Table 3.8, as λCAR1 increases, LOOCV increases and Std.Error de-

creases until λCAR1 = 11.32. Since both LOOCV and Std.Error are not sensitive,

we choose the optimal values between λCAR1 = 0 and λCAR1 = 0.05.

Table 3.9: CAR2 numerical results

λCARLS2 LOOCV Std.Error βTW2β
2 0.5129545 0.03145781 1.364795

1.8 0.5122766 0.03145447 1.392341
0.05 0.5053233 0.03169246 3.140114
0.03 0.5052181 0.03170346 3.247574
0.02 0.5051672 0.03170925 3.303003
0.01 0.5051135 0.03171523 3.363654

0 0.5050625 0.03172138 3.426745
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Based on Table 3.9, as λCAR2 increases, LOOCV increases and Std.Error de-

creases until λCAR2 = 1.8. Since both LOOCV and Std.Error are not sensitive, we

choose the optimal values between λCAR2 = 0 and λCAR2 = 0.05.

Table 3.10: CAR estimators and the percentage change

OLS CAR1 CAR2
|CAR2|−|CAR1|

|CAR1| × 100%

age -0.006184 -0.006109(-1.21%) -0.006070(-1.84%) (-0.64%)
sex -0.1481 -0.1480(-0.07%) -0.1479(-0.14%) (-0.07%)

bmi 0.3211 0.3213(0.06%) 0.3214(0.09%) (0.03%)
map 0.2004 0.2003(-0.05%) 0.2002(-0.10%) (-0.05%)

tc -0.4893 -0.4665(-4.66%) -0.4590(-6.19%) (-1.61%)
ldl 0.2945 0.2765(-6.11%) 0.2706( -8.11%) (-2.13%)

hdl 0.06241 0.05228(-16.23%) 0.04893( -21.60%) (-6.41%)
tch 0.1094 0.1066(-2.56%) 0.1056(-3.47%) (-0.94%)
ltg 0.4641 0.4556(-1.83%) 0.4529(-2.41%) (-0.59%)
glu 0.04177 0.04183(0.14%) 0.04189(0.29%) (0.14%)

In Table 3.10, we list the estimators of CAR at their optimal values. The

percentage values in the brackets are calculated by |CAR|−|OLS||OLS| × 100% which is the

percentage shrinkage at the optimal λ. The negative sign means shrinkage and the

positive sign means zooming. For both methods, variables called ldl, hdl, tch and

tc obviously have the larger percentage shrinkage. If we go back to Table 3.4, which

is the correlation matrix among independent variables, we see that the correlation

between variable ldl and variable tc is equal to 0.9, also the correlation between

variable tch and variable hdl is equal to −0.74. This implies that if there are multi-

collinearity, it is likely produced by those variables. To detect the multi-collinearity

issue, we shrinkage the estimators and shrink fast for the highly correlated variables.

This is what CAR does. The last column is the percentage change between the

CAR1 and the CAR2 at the optimal λ. It’s calculated by |CAR2|−|CAR1|
|CAR1| × 100%.
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The negative sign means shrinkage and the positive sign means zooming. As we see,

eight of the ten signs are negative. This implies the CAR2 has the more shrinkage

than the CAR1.

According to Figure 3.10, the coefficient path of CAR1 and CAR2 are very

similar. However, the coefficients of the variables ldl, hdl, tch and tc are converge

to 0 more faster at beginning for CAR2. Based on Table 3.8 and Table 3.9, at the

optimal values, CAR2 prefers shrinkage for highly correlated estimators than CAR1

at the beginning.
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3.3.6 Correlation adjusted elastic net

Since minimizing LASSO∗ = (Y ∗−X∗β∗)T (Y ∗−X∗β∗)+γ
∑p

i=1 |β∗i | is equivalent

to minimizing (Y −Xβ)T (Y −Xβ)+λ1
∑p

i=1 |βi|+λ2β
TWβ = CAEN , we apply

the lasso regression to obtain the numerical results by using the update data set.

Let λ2,i = i
100
− 0.01 for i = 1, 2, · · · , 201. That is, λ2,1 = 0, λ2,2 = 0.01,

λ2,3 = 0.02, · · · , λ2,201 = 2. For each λ2,i, we update the data set and do the lasso

regression to find the optimal LOOCV and corresponding standard error. Since

CAEN does the variable selection, we also show the number of non-zero variables

in the model which is called Df .

Table 3.11: CAEN1 numerical results

λ1 λ2 LOOCV Std.Error
∑p

i=1 |β∗i | Df
1.29177× 10−2 0 0.50372 3.10988× 10−2 1.17813 8
1.41768× 10−2 0.02 0.50374 3.10465× 10−2 1.16839 7
1.41734× 10−2 0.2 0.50387 3.10383× 10−2 1.16819 7
1.41697× 10−2 0.4 0.50403 3.10305× 10−2 1.16796 7
1.41660× 10−2 0.6 0.50419 3.10227× 10−2 1.16773 7
1.41623× 10−2 0.8 0.50436 3.10157× 10−2 1.16750 7
1.41614× 10−2 0.85 0.50441 3.10141× 10−2 1.16744 7
0.55855× 10−2 0.86 0.50442 3.13507× 10−2 1.27530 8

Based on Table 3.11, we choose any λ2 between 0.02 and 0.85. The smaller value

of λ2 gives the smaller LOOCV but a larger Std.Error and the larger value of λ2

gives the opposite result.
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Figure 3.11: CAEN1 LOOCV plot and path of coefficients
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In Figure 3.11, the top two graphics are the LOOCV plot and path of coefficients

for CAEN1 with λ2 = 0.02. The bottom two graphics are the LOOCV plot and

path of coefficients for CAEN1 with λ2 = 0.85.
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Table 3.12: CAEN2 numerical results

λ1 λ2 LOOCV Std.Error
∑p

i=1 |β∗i | Df
1.29177× 10−2 0 0.50372 3.10988× 10−2 1.17813 8
1.41748× 10−2 0.02 0.50378 3.10438× 10−2 1.16834 7
1.41542× 10−2 0.2 0.50433 3.10104× 10−2 1.16763 7
1.41313× 10−2 0.4 0.50494 3.09768× 10−2 1.16685 7
1.41085× 10−2 0.6 0.50557 3.09488× 10−2 1.16608 7
1.40859× 10−2 0.8 0.50620 3.09247× 10−2 1.16531 7
1.40633× 10−2 1 0.50684 3.09053× 10−2 1.16454 7
1.40588× 10−2 1.04 0.50697 3.09019× 10−2 1.16439 7
0.55446× 10−2 1.05 0.50700 3.12106× 10−2 1.26562 8

According to Table 3.12, we choose any λ2 between 0.02 and 1.04. The smaller

value of λ2 gives the smaller LOOCV but a larger Std.Error and the larger value

of λ2 gives the opposite result.
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Figure 3.12: CAEN2 LOOCV plot and path of coefficients
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In Figure 3.12, the top two graphics are the LOOCV plot and path of coefficients

for CAEN1 with λ2 = 0.02. The bottom two graphics are the LOOCV plot and

path of coefficients for CAEN1 with λ2 = 1.04.
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3.4 Summary

Since different penalized regression methods have their own characteristic, we sum-

marize the numerical results in three aspects.

Firstly, we compare the classical penalized regression methods which include the

ridge regression, lasso regression and elastic net regression.

Table 3.13: coefficient comparison of classic methods

OLS RIDGE7 LASSO ElasticNet

age -0.006184 -0.003548 0.0000 0.0000
sex -0.1481 -0.1426 -0.1211 -0.1342

bmi 0.3211 0.3200 0.3225 0.3189
map 0.2004 0.1964 0.1830 0.1907

tc -0.4893 -0.1537 -0.063 -0.1011
ldl 0.2945 0.0290 0.0000 0.0000

hdl 0.06241 -0.0826 -0.1379 -0.1078
tch 0.1094 0.0730 0.0000 0.0513
ltg 0.4641 0.3324 0.3173 0.3152
glu 0.04177 0.0454 0.0333 0.0424

LOOCV 0.5050891 0.5046807 0.504 0.5034
Std.Error 0.03152146 0.0307 0.0309 0.0310

Df 10 10 7 8

Based on Table 3.13, their characteristics are observed obviously. The ridge

regression does the shrinkage only (there are 10 nonzero variables in the final model),

the lasso regression does both the shrinkage and variable selection (there are 7

nonzero variables in the final model) and the elastic net regression is the combination

of the ridge regression and the lasso regression (there are 8 nonzero variables in

the final model). According to numerical results, the elastic net regression gives a

7The numerical results are calculated based on λ = 0.02.
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smaller LOOCV but a larger Std.Error. Ridge regression gives a smaller Std.Error

but a larger LOOCV . The lasso regression gives the neutral numerical result.

Secondly, we compare the ridge regression and the correlation adjusted regres-

sion. In the last chapter, we have summarized that the ridge regression is a special

version of CAR. So, we compare the ridge regression and CAR together.

Table 3.14: coefficient comparison of ridge and CAR

OLS RIDGE CAR1 CAR2

age -0.006184 -0.003548 -0.006108718 -0.00606960
sex -0.1481 -0.1426 -0.148013070 -0.14793351

bmi 0.3211 0.3200 0.321322661 0.32135148
map 0.2004 0.1964 0.200256526 0.20019397

tc -0.4893 -0.1537 -0.466495798 -0.45902860
ldl 0.2945 0.0290 0.276490700 0.27060242

hdl 0.06241 -0.0826 0.052283105 0.04893186
tch 0.1094 0.0730 0.106551737 0.10555651
ltg 0.4641 0.3324 0.455587466 0.45285726
glu 0.04177 0.0454 0.041825159 0.04188734

LOOCV 0.5050891 0.5046807 0.5050914 0.5051672
Std.Error 0.03152146 0.0307 0.03171711 0.03170925

Df 10 10 10 10

Based on Table 3.14, the ridge regression shows both smaller LOOCV and

smaller Std.Error. According our data set, the ridge regression performs better

results than CAR.

Finally, we compare the elastic net regression and the correlation adjusted elas-

tic net regression. In the last Chapter, we have summarized that the elastic net

regression is a special version of CAEN . So, we compare the elastic net regression

and CAEN together.

Based on Table 3.15, both the LOOCV and Std.Error are really close for the
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Table 3.15: coefficient comparison of elastic net and CAEN

OLS ElasticNet CAEN1 CAEN2

age -0.006184 0.0000 0.0000 0.0000
sex -0.1481 -0.1342 -0.11771 -0.11769

bmi 0.3211 0.3189 0.31903 0.31897
map 0.2004 0.1907 0.18006 0.18004

tc -0.4893 -0.1011 -0.05975 -0.05973
ldl 0.2945 0.0000 0.0000 0.0000

hdl 0.06241 -0.1078 -0.13584 -0.13586
tch 0.1094 0.0513 0.0000 0.0000
ltg 0.4641 0.3152 0.31257 0.31258
glu 0.04177 0.0424 0.03192 0.03196

LOOCV 0.5050891 0.5034 0.50374 0.50378
Std.Error 0.03152146 0.0310 0.0310465 0.0310438

Df 10 8 7 7

elastic net regression and the correlation adjusted elastic net regression. However,

there are only 7 nonzero variables in the CAEN final model. To compare with the

elastic net regression, the CAEN generates the less complex model with the same

LOOCV . According to our data set, the CAEN performs better than the elastic

net method.
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Chapter 4

Conclusion

With the rapid development of computer information technology, high dimensional

data analysis have became an important problem in modern statistics. It has be-

came increasingly common in many fields such as the social sciences, genetics and

medical studies. To establish an accurate model, numerous variables are collected.

Unfortunately, those variables are often highly correlated. As we have discussed

in this thesis, those variables make the model less predictive and difficult to in-

terpret. Therefore penalized regression methods provide a good way to select the

appropriate variables and establish an effective model.

4.1 Summary of results

In this thesis, we have given both theoretical and numerical results of penalized re-

gression methods, including ridge regression, lasso regression, elastic net regression,

CAR and CAEN . According to our numerical results, the CAR method prefers

shrinkage for highly correlated estimators. The CAEN method generates the less

complex model.
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The main results are as follows:

1. We give a detailed introduction to penalized regression and explain the issue

of multi-collinearity.

2. We use R to compute the numerical result for existing penalized regression

methods which include ridge, lasso and elastic net.

3. We use suitable data argumentation and edit the code inR package to compute

and investigate the numerical results for CAR and CAEN .

4. We summarize the numerical results and compare them in three aspects.

4.2 Future research

Based on this data set, the CAR method prefers shrinkage for highly correlated

variables at the beginning, especially for CAR2. In the future research, we would

like to investigate this characteristic. The CAEN method performs better results

compared to other methods. I would like to continue to test and verify the advan-

tages and disadvantages of the CAEN method. Moreover, we will apply CAR and

CAEN to survival data, since there are lot’s of variables in many survival data

analysis problems.
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Appendix

R Code

#################### Package Installation ####################

library(lars)

library(glmpath)

library(glmnet)

library(survival)

library(splines)

library(penalized)

library(covTest)

library(MASS)

library(Matrix)

library(psych)

library(DAAG)

library(rgl)

library(scatterplot3d)

library(lasso2)
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library (elasticnet)

library (pls)

library (hydroGOF)

library(xtable)

####################### Linear regression #####################

diabetesdata<-as.matrix(read.table("theoriginaldata.txt",header=TRUE))

diabetesdata<-stdize(diabetesdata)

diabetesdatax<-diabetesdata[,-11]

diabetesdatay<-diabetesdata[, 11]

linear<-lm(diabetesdatay ~ diabetesdatax)

summary(linear)

diabetesdata<-as.data.frame(diabetesdata)

is.data.frame(diabetesdata)

set.seed(100)

cv.linear<-CVlm(df=diabetesdata,m=442,

form.lm=formula(y~age+sex+bmi+map+tc+ldl+hdl+tch+ltg+glu))

###################### Ridge regression ########################

diabetesdata<-as.matrix(read.table("theoriginaldata.txt",header=TRUE))

diabetesdata<-stdize(diabetesdata)

diabetesdatax<-diabetesdata[,-11]

diabetesdatay<-diabetesdata[, 11]
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ridge.glm<-glmnet(diabetesdatax,diabetesdatay, alpha= 0)

summary(ridge.glm)

cv.ridge.glm <-cv.glmnet(diabetesdatax,diabetesdatay,

nfold=442, alpha= 0)

summary(cv.ridge.glm)

ridge.glm<-glmnet(diabetesdatax,diabetesdatay, alpha= 0,

lambda= c(585.1,16,2,1,0.05,0.02,0.01,0))

cv.ridge.glm <-cv.glmnet(diabetesdatax,diabetesdatay,nfold=442,

alpha= 0,lambda= c(585.1,16,2,1,0.05,0.02,0.01,0))

t(ridge.glm$beta[,1])%*%ridge.glm$beta[,1]

t(ridge.glm$beta[,3])%*%ridge.glm$beta[,3]

t(ridge.glm$beta[,8])%*%ridge.glm$beta[,8]

plot(cv.ridge.glm)

plot(ridge.glm)

####################### Lasso regression #######################

diabetesdata<-as.matrix(read.table("theoriginaldata.txt",header=TRUE))

diabetesdata<-scale(diabetesdata)

diabetesdatax<-diabetesdata[,-11]

diabetesdatay<-diabetesdata[, 11]

lasso.glm<-glmnet(diabetesdatax,diabetesdatay, alpha= 1)

summary(lasso.glm)

cv.lasso.glm<-cv.glmnet(diabetesdatax,diabetesdatay,

summary(cv.lasso.glm)
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nfold=442, alpha= 1)

plot(cv.lasso.glm)

plot(lasso.glm)

min.cv.index<-which.min(cv.lasso.glm$cvm)

min.cv.lasso<-cv.lasso$cv [min.cv.index]

lasso.glm$beta[,42]

sum(abs(lasso.glm$beta[,1]))

sum(abs(lasso.glm$beta[,10]))

sum(abs(lasso.glm$beta[,42]))

sum(abs(lasso.glm$beta[,88]))

############## Correlation adjusted regression #################

diabetesdata<-as.matrix(read.table("theoriginaldata.txt",header=TRUE))

diabetesdata<-scale(diabetesdata)

diabetesdatax<-diabetesdata[,-11]

diabetesdatay<-diabetesdata[, 11]

Xij<-diabetesdatax

dim(Xij)

n <- dim(Xij)[1]

p<- dim(Xij)[2]

one <- rep(1, n)

X.means <- t(one) %*% Xij/n

X.diff <- Xij - one %*% X.means

X.cov <- t(X.diff) %*% X.diff/(n - 1)
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sdi <- diag(1/sqrt(diag(X.cov)))

X.cor <- sdi %*% X.cov %*% sdi

###### or use round(cor(diabetesdatax),4)

x.cor<- round(cor(diabetesdatax),7)

diabetesdatax<-as.matrix(diabetesdatax)

diabetesdatay<-as.matrix(diabetesdatay)

zeromatrix<-matrix(c(rep(0, p)),p,1)

Ynew<- rbind(diabetesdatay,zeromatrix)

Da=matrix(c(1,-x.cor[1,2],0,0,0,0,0,0,0,0,

0,1,-x.cor[2,3],0,0,0,0,0,0,0,

0,0,1,-x.cor[3,4],0,0,0,0,0,0,

0,0,0,1,-x.cor[4,5],0,0,0,0,0,

0,0,0,0,1,-x.cor[5,6],0,0,0,0,

0,0,0,0,0,1,-x.cor[6,7],0,0,0,

0,0,0,0,0,0,1,-x.cor[7,8],0,0,

0,0,0,0,0,0,0,1,-x.cor[8,9],0,

0,0,0,0,0,0,0,0,1,-x.cor[9,10],
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0,0,0,0,0,0,0,0,0,1),nrow=10)

Wa=Da %*% t(Da)

Ca= chol(Wa)

Db=matrix(c(1, -x.cor[1,2],0,0,0,0,0,0,0,0,

1,0, -x.cor[1,3],0,0,0,0,0,0,0,

1,0,0, -x.cor[1,4],0,0,0,0,0,0,

1,0,0,0, -x.cor[1,5],0,0,0,0,0,

1,0,0,0,0, -x.cor[1,6],0,0,0,0,

1,0,0,0,0,0, -x.cor[1,7],0,0,0,

1,0,0,0,0,0,0, -x.cor[1,8],0,0,

1,0,0,0,0,0,0,0, -x.cor[1,9],0,

1,0,0,0,0,0,0,0,0,-x.cor[1,10],

0,1, -x.cor[2,3],0,0,0,0,0,0,0,

0,1,0, -x.cor[2,4],0,0,0,0,0,0,

0,1,0,0, -x.cor[2,5],0,0,0,0,0,

0,1,0,0,0, -x.cor[2,6],0,0,0,0,

0,1,0,0,0,0, -x.cor[2,7],0,0,0,

0,1,0,0,0,0,0, -x.cor[2,8],0,0,

0,1,0,0,0,0,0,0, -x.cor[2,9],0,

0,1,0,0,0,0,0,0,0, -x.cor[2,10],

0,0,1, -x.cor[3,4],0,0,0,0,0,0,

0,0,1,0, -x.cor[3,5],0,0,0,0,0,
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0,0,1,0,0, -x.cor[3,6],0,0,0,0,

0,0,1,0,0,0, -x.cor[3,7],0,0,0,

0,0,1,0,0,0,0, -x.cor[3,8],0,0,

0,0,1,0,0,0,0,0, -x.cor[3,9],0,

0,0,1,0,0,0,0,0,0,-x.cor[3,10],

0,0,0,1, -x.cor[4,5],0,0,0,0,0,

0,0,0,1,0, -x.cor[4,6],0,0,0,0,

0,0,0,1,0,0, -x.cor[4,7],0,0,0,

0,0,0,1,0,0,0, -x.cor[4,8],0,0,

0,0,0,1,0,0,0,0, -x.cor[4,9],0,

0,0,0,1,0,0,0,0,0,-x.cor[4,10],

0,0,0,0,1, -x.cor[5,6],0,0,0,0,

0,0,0,0,1,0, -x.cor[5,7],0,0,0,

0,0,0,0,1,0,0, -x.cor[5,8],0,0,

0,0,0,0,1,0,0,0, -x.cor[5,9],0,

0,0,0,0,1,0,0,0,0,-x.cor[5,10],

0,0,0,0,0,1, -x.cor[6,7],0,0,0,

0,0,0,0,0,1,0, -x.cor[6,8],0,0,

0,0,0,0,0,1,0,0, -x.cor[6,9],0,

0,0,0,0,0,1,0,0,0,-x.cor[6,10],

0,0,0,0,0,0,1, -x.cor[7,8],0,0,

0,0,0,0,0,0,1,0, -x.cor[7,9],0,

0,0,0,0,0,0,1,0,0,-x.cor[7,10],
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0,0,0,0,0,0,0,1, -x.cor[8,9],0,

0,0,0,0,0,0,0,1,0,-x.cor[8,10],

0,0,0,0,0,0,0,0,1,-x.cor[9,10],

0,0,0,0,0,0,0,0,0,1),nrow=10)

Wb= Db%*%t(Db)

Cb= chol(Wb)

lambda=seq(from=0,to=1,length=101)

### Using the different lambda[i] to find numerical result

### Ca for CAR1 and Cb for CAR2

X.new<-(1/sqrt(1+lambda[101]))*rbind(Xij,sqrt(lambda[101])*t(Ca))

Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<- cbind(X.new, Y.new)

diabetesdata.new< stdize(diabetesdata.new)

diabetesdata.new<-as.data.frame(diabetesdata.new)

diabetesdata.new<-as.matrix(diabetesdata.new)

cv.car<-CVlm(df=diabetesdata.new, m=452,form.lm=formula

(V11~age+sex+bmi+map+tc+ldl+hdl+tch+ltg+glu))

### find loocv and standard errors

car.glm<-glmnet(diabetesdata.new[,-11], diabetesdata.new[,11],

alpha=0 ,lambda=c(0.1,0))
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cv.ridge.glm<-cv.glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11],

nfold=452, alpha=0,lambda= c(0.1,0))

cv.ridge.glm

### find the coefficient

diabetesdata.new <-as.matrix(diabetesdata.new)

linear.car<-lm(diabetesdata.new[,11]~-1+diabetesdata.new[,-11])

summary(linear.car)

car.beta<-coef(linear.car)/sqrt(1+lambda[1])

beta_w_beta<-t(car.beta)%*%Wa%*%car.beta

### To find the coefficients path of CAR

### Ca for CAR1 and Cb for CAR2

lambda=seq(from=10,to=0,length=1001)

car.beta.v1<-numeric(1001)

car.beta.v2<-numeric(1001)

car.beta.v3<-numeric(1001)

car.beta.v4<-numeric(1001)

car.beta.v5<-numeric(1001)

car.beta.v6<-numeric(1001)

car.beta.v7<-numeric(1001)

car.beta.v8<-numeric(1001)

car.beta.v9<-numeric(1001)

car.beta.v10<-numeric(1001)
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for(i in 1:1001){

X.new<-(1/sqrt(1+lambda[i]))*rbind(Xij,sqrt(lambda[i])*t(Ca))

Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<- cbind(X.new, Y.new)

diabetesdata.new<- stdize(diabetesdata.new)

diabetesdata.new<-as.matrix(diabetesdata.new)

linear.car<-lm(diabetesdata.new[,11]~-1+diabetesdata.new[,-11])

as.matrix(coef(linear.car)/sqrt(1+lambda[i]))

car.beta.v1[i]<-coef(linear.car)[1]/sqrt(1+lambda[i])

as.matrix(car.beta.v1)

car.beta.v2[i]<-coef(linear.car)[2]/sqrt(1+lambda[i])

as.matrix(car.beta.v2)

car.beta.v3[i]<-coef(linear.car)[3]/sqrt(1+lambda[i])

as.matrix(car.beta.v3)

car.beta.v4[i]<-coef(linear.car)[4]/sqrt(1+lambda[i])

as.matrix(car.beta.v4)

car.beta.v5[i]<-coef(linear.car)[5]/sqrt(1+lambda[i])

as.matrix(car.beta.v5)

car.beta.v6[i]<-coef(linear.car)[6]/sqrt(1+lambda[i])

as.matrix(car.beta.v6)

car.beta.v7[i]<-coef(linear.car)[7]/sqrt(1+lambda[i])

as.matrix(car.beta.v7)

car.beta.v8[i]<-coef(linear.car)[8]/sqrt(1+lambda[i])
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as.matrix(car.beta.v8)

car.beta.v9[i]<-coef(linear.car)[9]/sqrt(1+lambda[i])

as.matrix(car.beta.v9)

car.beta.v10[i]<-coef(linear.car)[10]/sqrt(1+lambda[i])

as.matrix(car.beta.v10)

}

coef.car<-rbind(car.beta.v1,car.beta.v2,car.beta.v3,car.beta.v4,

car.beta.v5,car.beta.v6, car.beta.v7,car.beta.v8,

car.beta.v9,car.beta.v10)

matplot(t(coef.car),type = "l")

par(mfrow=c(1,2))

matplot(t(coef.car),xlab="steps",ylab="coefficients",

type = "l",main="CARLS1")

############ Correlation Adjusted Elastic Net #####################

diabetesdata<-as.matrix(read.table("theoriginaldata.txt",header=TRUE))

diabetesdata<-stdize(diabetesdata)

diabetesdatax<-diabetesdata[,-11]

diabetesdatay<-diabetesdata[, 11]

Xij<-diabetesdatax

dim(Xij)

n<-dim(Xij)[1]
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p<-dim(Xij)[2]

one<-rep(1, n)

X.means<-t(one) %*% Xij/n

X.diff<-Xij - one %*% X.means

X.cov<-t(X.diff) %*% X.diff/(n - 1)

sdi<-diag(1/sqrt(diag(X.cov)))

X.cor <- sdi %*% X.cov %*% sdi

###### or use round(cor(diabetesdatax),4)

x.cor<- round(cor(diabetesdatax),7)

diabetesdatax<-as.matrix(diabetesdatax)

diabetesdatay<-as.matrix(diabetesdatay)

zeromatrix<-matrix(c(rep(0, p)),p,1)

Ynew<-rbind(diabetesdatay,zeromatrix)

Da=matrix(c(1,-x.cor[1,2],0,0,0,0,0,0,0,0,

0,1,-x.cor[2,3],0,0,0,0,0,0,0,

0,0,1,-x.cor[3,4],0,0,0,0,0,0,

0,0,0,1,-x.cor[4,5],0,0,0,0,0,

0,0,0,0,1,-x.cor[5,6],0,0,0,0,

0,0,0,0,0,1,-x.cor[6,7],0,0,0,
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0,0,0,0,0,0,1,-x.cor[7,8],0,0,

0,0,0,0,0,0,0,1,-x.cor[8,9],0,

0,0,0,0,0,0,0,0,1,-x.cor[9,10],

0,0,0,0,0,0,0,0,0,1),nrow=10)

Wa=Da %*% t(Da)

Ca= chol(Wa)

Db=matrix(c(1, -x.cor[1,2],0,0,0,0,0,0,0,0,

1,0, -x.cor[1,3],0,0,0,0,0,0,0,

1,0,0, -x.cor[1,4],0,0,0,0,0,0,

1,0,0,0, -x.cor[1,5],0,0,0,0,0,

1,0,0,0,0, -x.cor[1,6],0,0,0,0,

1,0,0,0,0,0, -x.cor[1,7],0,0,0,

1,0,0,0,0,0,0, -x.cor[1,8],0,0,

1,0,0,0,0,0,0,0, -x.cor[1,9],0,

1,0,0,0,0,0,0,0,0,-x.cor[1,10],

0,1, -x.cor[2,3],0,0,0,0,0,0,0,

0,1,0, -x.cor[2,4],0,0,0,0,0,0,

0,1,0,0, -x.cor[2,5],0,0,0,0,0,

0,1,0,0,0, -x.cor[2,6],0,0,0,0,

0,1,0,0,0,0, -x.cor[2,7],0,0,0,

68



0,1,0,0,0,0,0, -x.cor[2,8],0,0,

0,1,0,0,0,0,0,0, -x.cor[2,9],0,

0,1,0,0,0,0,0,0,0, -x.cor[2,10],

0,0,1, -x.cor[3,4],0,0,0,0,0,0,

0,0,1,0, -x.cor[3,5],0,0,0,0,0,

0,0,1,0,0, -x.cor[3,6],0,0,0,0,

0,0,1,0,0,0, -x.cor[3,7],0,0,0,

0,0,1,0,0,0,0, -x.cor[3,8],0,0,

0,0,1,0,0,0,0,0, -x.cor[3,9],0,

0,0,1,0,0,0,0,0,0,-x.cor[3,10],

0,0,0,1, -x.cor[4,5],0,0,0,0,0,

0,0,0,1,0, -x.cor[4,6],0,0,0,0,

0,0,0,1,0,0, -x.cor[4,7],0,0,0,

0,0,0,1,0,0,0, -x.cor[4,8],0,0,

0,0,0,1,0,0,0,0, -x.cor[4,9],0,

0,0,0,1,0,0,0,0,0,-x.cor[4,10],

0,0,0,0,1, -x.cor[5,6],0,0,0,0,

0,0,0,0,1,0, -x.cor[5,7],0,0,0,

0,0,0,0,1,0,0, -x.cor[5,8],0,0,

0,0,0,0,1,0,0,0, -x.cor[5,9],0,

0,0,0,0,1,0,0,0,0,-x.cor[5,10],

0,0,0,0,0,1, -x.cor[6,7],0,0,0,

0,0,0,0,0,1,0, -x.cor[6,8],0,0,
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0,0,0,0,0,1,0,0, -x.cor[6,9],0,

0,0,0,0,0,1,0,0,0,-x.cor[6,10],

0,0,0,0,0,0,1, -x.cor[7,8],0,0,

0,0,0,0,0,0,1,0, -x.cor[7,9],0,

0,0,0,0,0,0,1,0,0,-x.cor[7,10],

0,0,0,0,0,0,0,1, -x.cor[8,9],0,

0,0,0,0,0,0,0,1,0,-x.cor[8,10],

0,0,0,0,0,0,0,0,1,-x.cor[9,10],

0,0,0,0,0,0,0,0,0,1),nrow=10)

Wb= Db%*%t(Db)

Cb= chol(Wb)

lambda=seq(from=0,to=2,length=201)

min.cv.caen.index <-numeric(201)

min.cv.caen<-numeric(201)

min.lambda.caen <-numeric(201)

min.cvsd.caen<-numeric(201)

min.cvsd.caen.index<-numeric(201)

### Ca for CAEN1 and Cb for CAEN2

for( i in 1:201){

X.new<-(1/sqrt(1+lambda[i]))*rbind(Xij,sqrt(lambda[i])*t(Ca))
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Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<-cbind(X.new, Y.new)

diabetesdata.new<-stdize(diabetesdata.new)

cv.caen.lasso.glm<-cv.glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11] ,nfold=452, alpha= 1)

min.cv.caen.index[i]<-which.min(cv.caen.lasso.glm$cvm)

min.cvsd.caen.index[i]<-which.min(cv.caen.lasso.glm$cvsd)

min.cv.caen[i]<-cv.caen.lasso.glm$cvm

[which.min(cv.caen.lasso.glm$cvm)]

min.cvsd.caen[i]<-cv.caen.lasso.glm$cvsd

[which.min(cv.caen.lasso.glm$cvm)]

min.lambda.caen[i]<-cv.caen.lasso.glm$lambda

[which.min(cv.caen.lasso.glm$cvm)]

}

### Using the different lambda[i] to find numerical result

### Ca for CAEN1 and Cb for CAEN2

X.new<-(1/sqrt(1+lambda[i]))*rbind(Xij,sqrt(lambda[i])*t(Ca))

Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<-cbind(X.new, Y.new)

diabetesdata.new<-stdize(diabetesdata.new)

cv.caen.lasso.glm<-cv.glmnet(diabetesdata.new[,-11],
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diabetesdata.new[,11], nfold=452, alpha= 1)

index<-which.min(cv.caen.lasso.glm$cvm)

cv.caen.lasso.glm$lambda[index]

cv.caen.lasso.glm$cvm[index]

cv.caen.lasso.glm$cvsd[index]

caen1_final.glm<-glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11], alpha= 1)

sum(abs(caen1_final.glm$beta[,index]))

index

caen1_final.glm$beta[,index]/sqrt(lambda[i])

### plot the graphic

### Ca for CAEN1 and Cb for CAEN2

X.new<-(1/sqrt(1+lambda[3]))*rbind(Xij,sqrt(lambda[3])*t(Ca))

Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<-cbind(X.new, Y.new)

diabetesdata.new<-stdize(diabetesdata.new)

cv.caen.lasso.glm<-cv.glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11],nfold=452, alpha= 1)

caen1_final.glm<-glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11],alpha= 1)

par(mfrow=c(2,2))

plot(cv.caen.lasso.glm)

plot(caen1_final.glm)
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abline(v=1.16839)

X.new<-(1/sqrt(1+lambda[86]))*rbind(Xij,sqrt(lambda[86])*t(Ca))

Y.new<-rbind(diabetesdatay,zeromatrix)

diabetesdata.new<-cbind(X.new, Y.new)

diabetesdata.new<-scale(diabetesdata.new)

cv.caen.lasso.glm<-cv.glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11],nfold=452, alpha= 1)

caen1_final.glm<-glmnet(diabetesdata.new[,-11],

diabetesdata.new[,11],alpha= 1)

plot(cv.caen.lasso.glm)

plot(caen1_final.glm)
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