• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Failure tests on full-scale models of grout laminated wood decks

    View/Open
    Mufti_Failure_tests_on_full_scale.pdf (776.8Kb)
    Date
    2004-01-31
    Author
    Mufti, AA
    Bakht, B
    Svecova, D
    Limaye, V
    Metadata
    Show full item record
    Abstract
    Grout laminated wood decks (GLWDs), representing the third generation of stressed wood decks, comprise either laminates or logs trimmed to obtain two parallel faces. The logs or laminates, running along the span, are held together by means of transverse internal grout cylinders that may be in either compression or tension. Two full-scale models of GLWD were constructed at Dalhousie University, Halifax, one with grout cylinders in compression and the other with the cylinders in tension. Service load tests conducted in Halifax showed that the former deck had better load distribution characteristics. Two years after the tests in Halifax, the models were shipped to The University of Manitoba in Winnipeg, where they were tested to failure under a central patch load. Because of miscommunication with the supplier, the logs of the GLWD with grout cylinders in compression were also trimmed to the third face that was kept at the bottom of the deck. The failure tests showed that despite its superior load distribution characteristics, the deck with grout cylinders in compression failed at a significantly lower load than the GLWD with cylinders in tension. It is argued that a planar surface in the logs at the flexural tension face not only reduces their flexural stiffness but also brings the defects of wood to the surface with maximum stress. The deck with the flat bottom surface underwent tension failure of the most heavily loaded logs, whereas the deck with the intact round surface of the logs at both top and bottom failed by horizontal splitting of all the logs.
    URI
    http://hdl.handle.net/1993/2887
    DOI
    10.1139/l03-088
    Collections
    • University of Manitoba Scholarship (login required) [171]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV