Show simple item record

dc.contributor.supervisorThomson, D. J.(Elec. & Comp. Eng.)en_US
dc.contributor.authorPERVEEN, KHALADA
dc.date.accessioned2013-12-19T20:44:18Z
dc.date.available2013-12-19T20:44:18Z
dc.date.issued2013-04-26en_US
dc.date.issued2013-05-06en_US
dc.identifier.citationInductively coupled corrosion potential sensor for steel reinforced concrete with time domain gating interrogationen_US
dc.identifier.citationAn embedded inductively coupled printed circuit board based corrosion potential sensoren_US
dc.identifier.urihttp://hdl.handle.net/1993/22728
dc.description.abstractThe thesis describes development and optimization process of an inductively coupled coil corrosion potential sensor for long-term civil structure health monitoring remotely. This is of growing interest for decreasing the maintenance cost, reducing the deterioration significantly and increasing the safety. The thesis is organized accordingly introduction, circuit modeling of the sensor, optimization and fabrication of the sensors and the simulated and experimental results from new and existing civil structure. The two geometrical design, cylindrical shape and Printed Circuit Board (PCB) based sensor parts of this research and their encapsulation technique for long-term enduring in harsh and corrosive environment of the civil infrastructure is described in the thesis. Results of an accelerated corrosion test on an embedded cylindrical shaped sensor indicates that the corrosion potential can be monitored with less than 10 mV resolution with a sensor sensitivity of ~0.73 kHz/mV. The last part describes a novel technique for a PCB sensor to simulate the existing structure already contaminated with corrosive substances such as chlorides. Two encapsulation techniques, non-conductive epoxy sealed and PLEXIGLAS with air gap sealed embedded PCB sensors response are compared from the accelerated corrosion test on new and built-in civil structure. Finally, results from the accelerated corrosion tests using the two encapsulation techniques mentioned above demonstrate that the embedded sensor in an existing structure may take up to 60 days to see the significant corrosion with a sensor sensitivity of ~ 1.53 kHz/mV or ~ 1.63 kHz/mV respectively. Since chlorides take many years to diffuse into concrete used for civil structures these sensors will respond fast enough to be used in existing structures as well as in new structures.en_US
dc.language.isoengen_US
dc.publisherProc. of SPIEen_US
dc.publisherIEEE Xploreen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectInductively Coupleden_US
dc.subjectCorrosion Potential Sensoren_US
dc.subjectRemote Passive Monitoringen_US
dc.titleInductively Coupled Corrosion Potential Sensor for Remote Passive Monitoring of New and Existing Civil Structuresen_US
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typemaster thesisen_US
dc.degree.disciplineElectrical and Computer Engineeringen_US
dc.contributor.examiningcommitteeShafai, C. (Elec. & Comp. Eng.) Richards, N. (Mech.& Mfg. Eng.)en_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.noteFebruary 2014en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record