High pressure processing at different hydration levels as a tool to enhance rice bran stability and techno-functionality

Loading...
Thumbnail Image
Date
2024-12-31
Authors
Grau-Fuentes, Eva
Garzon, Raquel
Rodrigo, Dolores
Rosell, Cristina M
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract

High-pressure processing (HPP) enhances food safety and shelf life by inactivating microorganisms and preserving food quality, yet its effectiveness in low-humidity environments has not been evaluated. This study investigated the effects of HPP at 500 MPa for 15 min across varying hydration levels (15, 30, 60, 77 %) on rice bran (RB), aiming to identify microbial effectiveness, besides techno-functional and physicochemical properties. HPP effectively reduced mesophilic bacteria, molds and yeast of RB at > 15 % hydration level, achieving reductions of up to 4 logarithmic cycles in the latter, nearing the detection limit of the method. However, it did not significantly impact spore inactivation. HPP treatment of ≥ 30 % hydrated RB induced particles aggregation and a honeycomb formation. The interaction between hydration and HPP treatment significantly affected the distribution of total dietary fibers, with an increase in soluble dietary fiber from 8.73 g/100 g to 11.03 g/100 g after HPP treatment at 15 % hydration level. Protein solubility was enhanced by hydration (15, 30 and 60 %), and peroxide values decreased after HPP treatment at low hydration (≤30 %) but increased when applied to high hydrated (>30 %) RB. Emulsifying activity decreased upon HPP treatment of highly hydrated RB (≥60 %), but more stable emulsions were achieved after HPP, regardless of the hydration level. Therefore, this study highlights the potential of HPP as a sustainable approach to enhance the utilization of rice bran in food applications, addressing existing knowledge gaps regarding its processing under different moisture conditions.

Description
Keywords
Microbiology counts, Technological properties, Fibers, Peroxide content, Particle size, Food safety, By-product
Citation