Spintronic sensor based microwave imaging

dc.contributor.authorFu, Lei
dc.contributor.examiningcommitteePistorius, Stephen (Physics and Astronomy) Rickey, Daniel (Physics and Astronomy) Bridges, Gregory (Electrical & Computer Engineering) Yelon, Arthur (École Polytechnique de Montréal)en_US
dc.contributor.supervisorHu, Can-Ming (Physics and Astronomy)en_US
dc.date.accessioned2016-09-08T18:18:09Z
dc.date.available2016-09-08T18:18:09Z
dc.date.issued2015-06-01en_US
dc.date.issued2015-09-25en_US
dc.date.issued2012-12-05en_US
dc.date.issued2015-05-14en_US
dc.date.issued2014-02-11en_US
dc.date.issued2012-07-18en_US
dc.date.issued2014-08-21en_US
dc.date.issued2013-01-18en_US
dc.degree.disciplinePhysics and Astronomyen_US
dc.degree.levelDoctor of Philosophy (Ph.D.)en_US
dc.description.abstractNovel characteristics of spin-based phenomena are intensively researched in the hope of discovering effects that could be used to develop new types of high-performance spintronic devices. Recent dynamics studies have revealed new principles for spintronic devices to sense microwaves. The capabilities for detecting both microwave electric field and magnetic field could make the spintronic microwave sensor as ubiquitous as semiconductor devices in microwave applications in the future. In this thesis, the feasibility of spintronic sensors in microwave applications has been researched and developed. Thanks to the high conversion efficiency of microwave rectification in the magnetic tunnel junction (MTJ) based spintronic sensor, it can directly measure the coherent spatially scattered microwave field distribution and detect a hidden object by analyzing the reflected microwave amplitude pattern. To enable the “real-time” vector measurement of the microwave field, a sensor based rapid phase detection technique is also developed. Combining the rapid phase detection technique and the microwave holography principle, a two-dimensional microwave holographic imaging system using a spintronic sensor was built. The high sensitivity of the microwave phase measurement allows the coherent imaging of the target to be reconstructed in noisy environments. By adapting the broadband measurement, not only the shape but also the distance of the target can be determined, which implies that three-dimensional imaging is achievable using a spintronic device. Combining the broadband microwave measurement and a wavefront reconstruction algorithm with a spintronic microwave sensor in circular trajectory, the reconstructed images of targets are obtained. The reconstructed images clearly indicate the targets' positions even when the targets were immersed in a liquid to simulate an inhomogeneous tissue environment. Our spintronic techniques provide a promising approach for microwave imaging, with the potential to be used in various areas, such as biomedical applications, security services, and material characterization.en_US
dc.description.noteOctober 2016en_US
dc.identifier.citationL. Fu, Y. S. Gui, L. H. Bai, H. Guo, H. Abou-Rachid, and C.-M. Hu: “Microwave holography using a magnetic tunnel junction based spintronic microwave sensor”, J. Appl. Phys., 117, 213902 (2015).en_US
dc.identifier.citationL. Fu, W. Lu, D.R. Herrera, D.F. Tapia, Y.S. Gui, S. Pistorius, C.-M. Hu: “Microwave radar imaging using a solid state spintronic microwave sensor”, Appl. Phys. Lett. 105, 122406 (2014).en_US
dc.identifier.citationL. Fu, Z. X. Cao, S. Hemour, K. Wu, D. Houssameddine, W. Lu, S. Pistorius, Y. S. Gui and C.-M. Hu: “Microwave reflection imaging using a magnetic tunnel junction based spintronic microwave sensor”, Appl. Phys. Lett. 101, 232406 (2012).en_US
dc.identifier.citationL. Fu, Y. S. Gui, Y. Xiao, M. Jaidann, H. Guo, H. Abou-Rachid, and C.-M. Hu: “Detection of concealed targets using spintronic microwave sensor”, Proc. SPIE 9454, 945406 (2015).en_US
dc.identifier.citationB. M. Yao,L. Fu , X. S. Chen, W. Lu, L. H. Bai, Y. S. Gui and C.-M. Hu: “Rapid microwave phase detection based on a solid state spintronic device”, Appl. Phys. Lett. 104, 062408 (2014).en_US
dc.identifier.citationZ. H. Zhang, Y. S. Gui, L. Fu, X. L. Fan, J. W. Cao, D. S. Xue, P. P. Freitas, D. Houssameddine, S. Hemour, K. Wu, and C.-M. Hu: “Seebeck Rectification Enabled by Intrinsic Thermoelectrical Coupling in Magnetic Tunneling Junctions”, Phys. Rev. Lett., 109, 037206 (2012).en_US
dc.identifier.citationY.S. Gui, Ali M. Mehrabani, Daniel Flores-Tapia, L. Fu, L.H. Bai, S. Pistorius, Lot Shafai, and C.-M. Hu: “New horizons for microwave applications using spin caloritronics”, Solid State Communications, 198, 45 (2014).en_US
dc.identifier.citationZ.X. Cao, W. Lu, L. Fu, Y.S. Gui, C.-M. Hu: “Spintronic microwave imaging”, Appl. Phys. A, 111, 329-337 (2013).en_US
dc.identifier.urihttp://hdl.handle.net/1993/31646
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.publisherAIP Publishingen_US
dc.publisherAIP Publishingen_US
dc.publisherSPIEen_US
dc.publisherAIP Publishingen_US
dc.publisherAmerican Physical Societyen_US
dc.publisherElesevieren_US
dc.publisherSpringeren_US
dc.rightsopen accessen_US
dc.subjectspintronics, microwave imagingen_US
dc.titleSpintronic sensor based microwave imagingen_US
dc.typedoctoral thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lei_Fu_7694227_Final.pdf
Size:
28.63 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: