Design and Study of a New Ultra-wideband Pattern Diversity Antenna, for High-Gain Application

dc.contributor.authorRezazadeh, Navid
dc.contributor.examiningcommitteeMojabi, Puyan (Electrical and Computer Engineering) Osborn, Thomas (Physics and Astronomy)en_US
dc.contributor.supervisorShafai, Lot (Electrical and Computer Engineering)en_US
dc.date.accessioned2014-09-02T18:12:48Z
dc.date.available2014-09-02T18:12:48Z
dc.date.issued2014-09-02
dc.degree.disciplineElectrical and Computer Engineeringen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractA new Ultra-Wideband (UWB) pattern diversity antenna is proposed, designed and investigated in this thesis. The antenna is capable of radiating in directive and omni-directional modes. Three different versions of the design are studied to show the performance for different applications. The first design consists of a single radiating element fed from two sides by coaxial probes over a shaped ground plane. In-phase excitation of the ports produces omni-directional radiation patterns and out-of-phase excitation results in directive radiation in the boresight of the antenna. The shape of the radiator is a disk, which is modified in geometry to improve the isolation of the ports. The antenna shows impedance bandwidth from 6.8 GHz to more than 15 GHz. The second design is a dual-element version of the same antenna to equalize the radiation patterns in the E- and H-planes. The antenna requires four ports and has an impedance bandwidth from 7.4 GHz to more than 15 GHz. A microstrip power divider is then included, in the third design, which in addition to decreasing the number of extra circuits for feeding, decreases the lower frequency to 4.5 GHz, without changing the radiation patterns significantly throughout the bandwidth. A prototype of this antenna was fabricated and measured, and the results are presented. In the fifth chapter, an electromagnetic polarization filter is designed for the single element UWB antenna, to reduce the cross-polarization level. 7 dB reduction in the maximum level of cross-polarization is achieved, throughout the frequency band 8 - 11 GHz. The following chapter is dedicated to the study and performance of the microstrip-fed UWB antenna, when used as a feed for prime-focus reflectors. It is shown that the designed antenna is capable of feeding the reflector with efficiency as high as 75%, and more than 60%, over a wide bandwidth of 5.5 - 9 GHz.en_US
dc.description.noteOctober 2014en_US
dc.identifier.urihttp://hdl.handle.net/1993/23936
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectUltra-widebanden_US
dc.subjectAntennaen_US
dc.subjectPattern Diversityen_US
dc.titleDesign and Study of a New Ultra-wideband Pattern Diversity Antenna, for High-Gain Applicationen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rezazadeh_Navid.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.25 KB
Format:
Item-specific license agreed to upon submission
Description: