The collective mind: An experimental analysis of imitation and self-organization in humans

dc.contributor.authorOlarewaju, Emmanuel
dc.contributor.examiningcommitteePorter, Michelle (Kinesiology and Recreational Management) Gillis, Darren (Biological Sciences)en_US
dc.contributor.supervisorLeboe-McGowan, Jason (Psychology) Hare, James (Biological Sciences)en_US
dc.date.accessioned2021-04-13T16:01:01Z
dc.date.available2021-04-13T16:01:01Z
dc.date.copyright2021-03-28
dc.date.issued2021en_US
dc.date.submitted2021-03-28T14:30:02Zen_US
dc.degree.disciplineBiological Sciencesen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractI present an experimental paradigm to explore the interpersonal dynamics generating a collective mind. I hypothesized that collective organization among humans is based on dual interpersonal modes: (1) symmetrical and (2) anti-symmetrical. I specified these modes by detecting spatiotemporal patterns that embed cooperative agents in a three-dimensional (invariant) matrix. Within this spatiotemporal matrix, I found that the symmetrical mode is executed automatically and without guidance. Conversely, the anti-symmetrical mode required explicit direction and recruited attention for execution. I demonstrate that interpersonal symmetry stabilized group dynamics, enabled fast and efficient imitation that optimized information transmission, whereas anti-symmetrical imitation was comparatively slow, inefficient, and unstable. I determined that the anti-symmetrical mode spontaneously transitioned to the symmetrical mode under perturbations. Crucially, this renormalizing behaviour never transitioned from symmetrical to anti-symmetrical. This self-organizing group mechanism speaks to symmetry-breaking in cooperation dynamics. In the present work, spontaneous group choice mandated that agents align action-perception cycles in symmetrical space under internal or external perturbations. I provide examples to illustrate that this group behaviour manifests in invertebrates and vertebrates alike. I conclude by suggesting that inter-agent symmetry provides the social stability in which attention-driven interactions enable intrapersonal and interpersonal change. Future researchers may employ the methods I provide here to explore the emergent brain activity that gives rise to interpersonal symmetry-breaking and renormalization. Research in this area may offer insight into the patterns of neural activity (i.e., intrapersonal dynamics) that predict interpersonal symmetry-breaking, thus enabling the analysis of the neurological mechanisms underlying collective organization and social cognition.en_US
dc.description.noteMay 2021en_US
dc.identifier.citationAmerican Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5 (5th ed.). American Psychiatric Publishing.en_US
dc.identifier.citationAltshuler, Ramos, Núñez, Fernández, Batista-Leyva, & Noda. (2005). Symmetry Breaking in Escaping Ants. The American Naturalist, 166(6), 643-649. https://doi.org/10.2307/3491227en_US
dc.identifier.citationAncel, A., Gilbert, C., Poulin, N., Beaulieu, M., & Thierry, B. (2015). New insights into the huddling dynamics of emperor penguins. Animal Behaviour, 110, 91 98. https://doi.org/10.1016/j.anbehav.2015.09.019en_US
dc.identifier.citationAncel, A., Visser, H., & Handrich, Y. (2005). Energy saving in huddling penguins. Nature 385, 304 305. https://doi.org/10.1038/385304a0en_US
dc.identifier.citationAkbar, U., Ashizawa, T. (2015). Ataxia. Neurologic Clinics, 33(1), 225–248. https://doi.org/10.1016/j.ncl.2014.09.004en_US
dc.identifier.citationAshby, W. R. (1947). Principles of the Self-Organizing Dynamic System. The Journal of General Psychology, 37(2), 125–128. https://doi.org/10.1080/00221309.1947.9918144en_US
dc.identifier.citationAziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26, 2964–2970. https://doi:10.1523/JNEUROSCI.2921-05.2006en_US
dc.identifier.citationBadcock, P. B., Friston, K. J., & Ramstead, M. J. D. (2019b). The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Physics of Life Reviews, 31, 104121. https://doi.org/10.1016/j.plrev.2018.10.002en_US
dc.identifier.citationBak, P., Tang, C., Wiesenfeld, K., (1988). Self-organized criticality. Physical review. A, General physics 38, 364-374. https://doi.org/10.1103/PhysRevA.38.364en_US
dc.identifier.citationBak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/fnoise. Physical Review Letters, 59(4), 381–384. https://doi.org/10.1103/physrevlett.59.381en_US
dc.identifier.citationBevc, C. A., Retrum, J. H., & Varda, D. M. (2015). New perspectives on the "silo effect": initial comparisons of network structures across public health collaboratives. American journal of public health, 105 Suppl 2(Suppl 2), S230–S235. https://doi.org/10.2105/AJPH.2014.302256en_US
dc.identifier.citationBialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation, 13(11), 2409-2463. https://doi.org/10.1162/089976601753195969en_US
dc.identifier.citationBisiach, E., Luzzatti, C., & Perani, D. (1979). Unilateral neglect, representational schema and consciousness. Brain, 102(3), 609-618. https://doi.org/10.1093/brain/102.3.609en_US
dc.identifier.citationBrainin, M., Seiser, A., & Matz, K. (2008). The mirror world of motor inhibition: The alien hand syndrome in chronic stroke. Journal of Neurology, Neurosurgery & Psychiatry, 79(3), 246-252. https://doi.org/10.1136/jnnp.2007.116046en_US
dc.identifier.citationBrass, M., Ruby, P., & Spengler, S. (2009). Inhibition of imitative behaviour and social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2359-2367. https://doi.org/10.1098/rstb.2009.0066en_US
dc.identifier.citationBrass, M., & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489-495. https://doi.org/10.1016/j.tics.2005.08.007en_US
dc.identifier.citationBuxbaum, L., Ferraro, M., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., Frassinetti, F., & Coslett, H. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749 756. https://doi.org/10.1212/01.wnl.0000113730.73031.f4en_US
dc.identifier.citationCatmur, C., Press, C., and Heyes, C. (2016). Mirror associations. In R. A. Murphy and R. C. Honey (eds.), The Wiley Handbook of the Cognitive Neuroscience of Learning. Hoboken, NJ: Wiley.en_US
dc.identifier.citationCatmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2369-2380. https://doi.org/10.1098/rstb.2009.0048en_US
dc.identifier.citationCialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annual Review of Psychology, 55(1), 591-621. https://doi.org/10.1146/annurev.psych.55.090902.142015en_US
dc.identifier.citationCook, R., Dickinson, A., and Heyes, C. (2012). Contextual modulation of mirror and countermirror sensorimotor associations. Journal of Experimental Psychology: General, 141(4), 774–787. https://doi.apa.org/doi/10.1037/a0027561en_US
dc.identifier.citationCook, R., Press, C., Dickinson, A., and Heyes, C. (2010). Is the acquisition of automatic imitation sensitive to sensorimotor contingency? Journal of Experimental Psychology: Human Perception and Performance, 36, 840–852. https://psycnet.apa.org/doi/10.1037/a0019256en_US
dc.identifier.citationCooper, R. P., Cook, R., Dickinson, A., and Heyes, C. (2013). Associative (not Hebbian) learning and the mirror neuron system. Neuroscience Letters, 540, 28–36. https://doi.org/10.1016/j.neulet.2012.10.002en_US
dc.identifier.citationCorcoran, A. J., & Hedrick, T. L. (2019). Compound-V formations in shorebird flocks. eLife, 8. https://doi.org/10.7554/elife.45071en_US
dc.identifier.citationDinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology,98, 1415 1427. http://doi:10.1152/jn.00238.2007en_US
dc.identifier.citationGrossi, D., Di Cesare, G., & Trojano, L. (2004). Left on the right or Viceversa: A case of “Alternating” constructional allochiria. Cortex, 40(3), 511-518. https://doi.org/10.1016/s0010-9452(08)70143-6en_US
dc.identifier.citationFriston, K. (2012). A Free Energy Principle for Biological Systems. Entropy, 14(11), 2100-2121. https://doi.org/10.3390/e14112100en_US
dc.identifier.citationFriston, K., Breakspear, M., & Deco, G. (2012). Perception and self-organized instability. Frontiers in Computational Neuroscience, 6. https://doi.org/10.3389/fncom.2012.00044en_US
dc.identifier.citationFriston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138. https://doi.org/doi:10.1038/nrn2787en_US
dc.identifier.citationFriston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005en_US
dc.identifier.citationGazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16,1824–1829. http://doi:10.1016/j.cub.2006.07.072en_US
dc.identifier.citationGazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 1674 1684. http://doi:10.1016/j.neuroimage.2007.02.003en_US
dc.identifier.citationGerum, R. C., Fabry, B., Metzner, C., Beaulieu, M., Ancel, A., & Zitterbart, D. P. (2013). The origin of traveling waves in an emperor penguin huddle. New Journal of Physics, 15(12), 125022. https://doi.org/10.1088/1367-2630/15/12/125022en_US
dc.identifier.citationGilbert, C., Blanc, S., Le Maho, Y., & Ancel, A. (2008). Energy saving processes in huddling emperor penguins: from experiments to theory. The Journal of experimental biology, 211(Pt 1), 1–8. https://doi.org/10.1242/jeb.005785en_US
dc.identifier.citationHaken, H., Kelso, J. A., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347-356. https://doi.org/10.1007/bf00336922en_US
dc.identifier.citationHaken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self organization in physics, chemistry and biology. Springer Verlag.en_US
dc.identifier.citationHelbing, D., Farkas, I. & Vicsek, T. (2000) Simulating Dynamical Features of Escape Panic. Nature 407, 487–490. https://doi.org/10.1038/35035023en_US
dc.identifier.citationHemelrijk, C., Reid, D., Hildenbrandt, H., & Padding, J. (2014). The increased efficiency of fish swimming in a school. Fish and Fisheries, 16(3), 511-521. https://doi.org/10.1111/faf.12072en_US
dc.identifier.citationHesse, J., & Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Frontiers in Systems Neuroscience, 8, 1–14. https://doi.org/10.3389/fnsys.2014.00166en_US
dc.identifier.citationHeyes, C. (2018). Cognitive Gadgets: The Cultural Evolution of Thinking (Illustrated ed.). Belknap Press: An Imprint of Harvard University Press.en_US
dc.identifier.citationHeyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463–483. https://doi.org/10.1037/a0022288en_US
dc.identifier.citationHeyes, C., & Ray, E. D. (2000). What is the significance of imitation in animals? Advances in the Study of Behavior, 29, 215–245. https://doi.org/10.1016/S0065-3454(08)60106-0en_US
dc.identifier.citationHohwy, J. (2014). The Self-Evidencing Brain. Noûs, 50(2), 259-285. https://doi.org/10.1111/nous.12062en_US
dc.identifier.citationHove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949–960. https://doi.org/10.1521/soco.2009.27.6.949en_US
dc.identifier.citationKelso, J. A. (2014). The Dynamic Brain in Action: Coordinative Structures, Criticality, and Coordination Dynamics. Criticality in Neural Systems, 67-104. https://doi.org/10.1002/9783527651009en_US
dc.identifier.citationKelso, J. A. S. (2012). Multistability and metastability: understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 906–918. https://doi.org/10.1098/rstb.2011.0351en_US
dc.identifier.citationKelso, J.A.S. (2009). Coordination Dynamics, in Encyclopedia of Complexity and Systems Science. R. A. Meyers. ed. Springer. Heidelberg, 1537 1564. https://doi.org/10.1007/978-3-642-27737-5_101-3.en_US
dc.identifier.citationKelso, J. A. S. (2001). Metastable Coordination Dynamics of Brain and Behavior. The Brain & Neural Networks, 8(4), 125–130. https://doi.org/10.3902/jnns.8.125en_US
dc.identifier.citationKelso, J. A. S. (2000a). “Principles of dynamic pattern formation and change for a science of human behavior,” in Developmental Science and the Holistic Approach: Proceedings of a conference at Wiks Castle and the Nobel Institute, eds L. Bergman, R. B. Cairns, L. G. Nilsson, and L. Nystedt (Stockholm; Mahwah, NJ: Erlbaum), 63–83.en_US
dc.identifier.citationKelso, J. A. S. (2000b). “How the brain changes its mind: Metastable Coordination Dynamics,” in The Emergence of Mind: Proceedings of the International Symposium at the Fondazione Carl Erba Foundation (Italy; Milano), 1–18.en_US
dc.identifier.citationKelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 246(6), R1000-R1004. https://doi.org/10.1152/ajpregu.1984.246.6.r1000en_US
dc.identifier.citationKerkhoff, G. (2001). Spatial hemineglect in humans. Progress in Neurobiology, 63(1), 1-27. https://doi.org/10.1016/s0301-0082(00)00028-9en_US
dc.identifier.citationKilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2010). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 10153 10159. http://doi:10.1523/JNEUROSCI.2668-09.2009en_US
dc.identifier.citationKirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: autonomy, active inference and the free energy principle. Journal of The Royal Society Interface, 15(138), 20170792. https://doi.org/10.1098/rsif.2017.0792en_US
dc.identifier.citationKnill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719. https://doi.org/10.1016/j.tins.2004.10.007en_US
dc.identifier.citationKornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—A model and taxonomy. Psychological Review, 97, 253–270. https://doi.org/10.1037/0033-295X.97.2.253en_US
dc.identifier.citationMeltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model. Early Development and Parenting, 6(3-4), 179-192. https://doi.org/10.1002/(sici)1099-0917(199709/12)6:3/43.0.co;2-ren_US
dc.identifier.citationNishikawa, T. (2001). Conflict of intentions due to callosal disconnection. Journal of Neurology, Neurosurgery & Psychiatry, 71(4), 462-471. https://doi.org/10.1136/jnnp.71.4.462en_US
dc.identifier.citationO'Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus, 1(3), 230-235. https://doi.org/10.1002/hipo.450010303en_US
dc.identifier.citationO'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425-428. https://doi.org/10.1038/381425a0en_US
dc.identifier.citationO'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171 175. https://doi.org/10.1016/0006-8993(71)90358-1en_US
dc.identifier.citationO'Keefe, J., Nadel, L., & Regents Professor of Psychology Lynn Nadel. (1978). The hippocampus as a cognitive map. Oxford University Press, USA.en_US
dc.identifier.citationOvchinnikov, I. (2016). Introduction to Supersymmetric theory of stochastics. Entropy, 18(4), 108. https://doi.org/10.3390/e18040108en_US
dc.identifier.citationPalacios, E. R., Razi, A., Parr, T., Kirchhoff, M., & Friston, K. (2020). On Markov blankets and hierarchical self-organisation. Journal of Theoretical Biology, 486, 110089. https://doi.org/10.1016/j.jtbi.2019.110089en_US
dc.identifier.citationRatcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510–532. https://doi.org/10.1037/0033-2909.114.3.510en_US
dc.identifier.citationSaloma, C., Perez, G. J., Tapang, G., Lim, M., & Palmes-Saloma, C. (2003). Self-organized queuing and scale-free behavior in real escape panic. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 11947–11952. https://doi.org/10.1073/pnas.2031912100en_US
dc.identifier.citationSchmidt, A. (2016, May 26). Groupthink. Encyclopedia Britannica. https://www.britannica.com/science/groupthinken_US
dc.identifier.citationSchwabl, F. (2002). Phase transitions, Scale invariance, Renormalization Group Theory, and Percolation. Statistical Mechanics, 331-408. https://doi.org/10.1007/3-540-36217-7_7en_US
dc.identifier.citationShannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal. 27 (3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.xen_US
dc.identifier.citationSimon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174-176. https://doi.org/10.1037/h0027448en_US
dc.identifier.citationStroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662. https://doi.org/10.1037/h0054651en_US
dc.identifier.citationTarr, B., Launay, J., Cohen, E., and Dunbar, R. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11(10), 20150767. https://doi.org/10.1098/rsbl.2015.0767en_US
dc.identifier.citationTschacher, W., & Haken, H. (2007). Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation. New Ideas in Psychology, 25(1), 1–15. https://doi.org/10.1016/j.newideapsych.2006.09.002en_US
dc.identifier.citationTunçgenç, B., & Cohen, E. (2016). “Movement synchrony forges social bonds across group divides”: Corrigendum. Frontiers in Psychology, 7, Article 1737. https://doi.org/10.3389/fpsyg.2016.00782en_US
dc.identifier.citationStensola, T., & Moser, E. I. (2016). Grid cells and spatial maps in Entorhinal cortex and hippocampus. Research and Perspectives in Neurosciences, 59 80. https://doi.org/10.1007/978-3-319-28802-4_5en_US
dc.identifier.citationVallar, G. (1998). Spatial hemineglect in humans. Trends in Cognitive Sciences, 2(3), 87 97. https://doi.org/10.1016/s1364-6613(98)01145-0en_US
dc.identifier.citationVeissière, S. P. L., Constant, A., Ramstead, M. J. D., Friston, K. J., & Kirmayer, L. J. (2019). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences 43, 1–75. https://doi.org/10.1017/s0140525x19001213en_US
dc.identifier.citationWaters, A., Blanchette, F., & Kim, A. D. (2012). Modeling huddling penguins. PLoS ONE, 7(11), e50277. https://doi.org/10.1371/journal.pone.0050277en_US
dc.identifier.citationWiltermuth, S. S., and Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20(1), 1–5. https://doi.org/10.1111%2Fj.1467-9280.2008.02253.xen_US
dc.identifier.citationZitterbart, D. P., Wienecke, B., Butler, J. P., & Fabry, B. (2011). Coordinated movements prevent jamming in an emperor penguin huddle. PLoS ONE, 6(6), e20260. https://doi.org/10.1371/journal.pone.0020260en_US
dc.identifier.urihttp://hdl.handle.net/1993/35427
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectSocial cognition, Cooperative dynamics, Self-organization, Imitation, Interpersonal symmetry, Group renormalizationen_US
dc.titleThe collective mind: An experimental analysis of imitation and self-organization in humansen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 5 of 8
Loading...
Thumbnail Image
Name:
Olarewaju_Emmanuel.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
experiment_1.jpg
Size:
76.47 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Loading...
Thumbnail Image
Name:
experiment_2.jpg
Size:
90.42 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Loading...
Thumbnail Image
Name:
experiment_3.jpg
Size:
82.83 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Loading...
Thumbnail Image
Name:
experiment_1a_graph.jpg
Size:
130.94 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: