NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs

dc.contributor.authorSaville, Luke
dc.contributor.authorWu, Li
dc.contributor.authorHabtewold, Jemaneh
dc.contributor.authorCheng, Yubo
dc.contributor.authorGollen, Babita
dc.contributor.authorMitchell, Liam
dc.contributor.authorStuart-Edwards, Matthew
dc.contributor.authorHaight, Travis
dc.contributor.authorMohajerani, Majid
dc.contributor.authorZovoilis, Athanasios
dc.date.accessioned2024-09-03T14:39:32Z
dc.date.available2024-09-03T14:39:32Z
dc.date.issued2024-08-28
dc.date.updated2024-09-01T03:21:34Z
dc.description.abstractAbstract Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.
dc.identifier.citationGenome Biology. 2024 Aug 28;25(1):233
dc.identifier.urihttps://doi.org/10.1186/s13059-024-03375-8
dc.identifier.urihttp://hdl.handle.net/1993/38487
dc.language.rfc3066en
dc.rightsopen accessen_US
dc.rights.holderThe Author(s)
dc.titleNERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13059_2024_Article_3375.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
770 B
Format:
Item-specific license agreed to upon submission
Description: