Problems in extremal graph theory and Euclidean Ramsey theory
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis addresses problems of three types.
The first type is finding extremal numbers for unions of graphs, each with a colour-critical edge (joint work with V. Nikiforov). In 1968, Simonovits found extremal numbers $ex(n,H)$ for graphs with a colour-critical edge for large $n$ (without specifying how large). A similar result for unions of graphs, each with a colour-critical edge, can be deduced from Simonovits' 1974 work. Nikiforov and I improved this result, giving a precise bound for $n$.
The second type of problem considered is maximizing the number of cycles in a graph (joint work with A. Arman and D. Gunderson). It is proved that for sufficiently many vertices, the complete balanced bipartite graph is the unique triangle-free graph with the maximum number of cycles, thus answering a conjecture posed by Durocher et al. Other results include upper and lower bounds on the maximum number of cycles in graphs and multigraphs with a given number of edges, or with a given number of vertices and edges. The lower bounds in some cases come from random graphs; the asymptotics for the expected number of cycles in the random graph $G(n,m)$ is found for all possible relations between $n$ and $m$.
The final chapter is dedicated to Euclidean Ramsey theory. Two results about two-colouring of Euclidean spaces are given. One of the results answers in the affirmative a question asked in 1973 by Erd\H{o}s and others: if the Euclidean plane is coloured in red and blue, are there either two red points at distance one or five blue points on a line with distance one between consecutive points? The second result (joint work with A. Arman) answers the similar question for six points in 3-dimensional space.