Connexin30, expression in astrocytes, co-localization with connexin43 at gap junctions, and late developmental appearance in rat brain

dc.contributor.authorPatel, Daywinen_US
dc.date.accessioned2007-05-18T12:12:31Z
dc.date.available2007-05-18T12:12:31Z
dc.date.issued1998-11-01T00:00:00Zen_US
dc.degree.disciplinePhysiologyen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractEvidence has been presented (Nagy et al., 1997a) that in addition to connexin43, astrocytes express a second connexin, suggested to be connexin30 (Cx30), a recently discovered member of the family of gap junction proteins. A Cx30 specific antibody was developed and used to confirm this observation using Western blots and immunohistochemical techniques. On Western blots, this antibody detected a 30,000 mol. wt protein in rat, mouse, cat and human brain. It did not exhibit cross-reaction with connexin43 (Cx43), connexin26 (Cx26), or any other known connexins expressed in brain. Immunohistochemically, Cx30 was localized to astrocytes, at gap junctions of these cells, and on the astrocytic side of gap junctions between astrocytes and oligodendrocytes. Double labeling revealed co-expression of Cx30 with Cx43 at astrocytic gap junctions. The punctate immunolabeling patterns of these two connexins was similar, but differences were evident. In contrast to regional Cx43 expression, diencephalic and hindbrain areas showed a greater expression of Cx30 than did forebrain areas. Subcortical perivascular astrocytic endfeet were more heavily labeled for Cx30. White matter tracts such as corpus callosum, internal capsule, and anterior commissure were devoid of Cx30 labeling. During development, Cx30 was not detected until about 15 days postnatal. These results indicate that Cx30 is expressed in gray matter, but not in white matter astrocytes, the distribution of Cx30 is highly heterogeneous in gray matter, it is co-localized with Cx43 at astrocytic gap junctions where it forms homotypic or heterotypic junctions, and its emergence is delayed until late brain maturation. The results suggest that astrocytic Cx30 expression at regional and cellular levels is subject to regulation in adult brain as well as during brain development.en_US
dc.format.extent6001816 bytes
dc.format.extent184 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.identifier.urihttp://hdl.handle.net/1993/1566
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.titleConnexin30, expression in astrocytes, co-localization with connexin43 at gap junctions, and late developmental appearance in rat brainen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MQ35081.pdf
Size:
5.72 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
184 B
Format:
Plain Text
Description: