Non-left-orderable surgeries of twisted torus knots

dc.contributor.authorDovhyi, Serhii
dc.contributor.examiningcommitteeKrepski, Derek (Mathematics) Wang, Xikui (Statistics)en_US
dc.contributor.supervisorClay, Adam (Mathematics)en_US
dc.date.accessioned2017-09-18T17:56:19Z
dc.date.available2017-09-18T17:56:19Z
dc.date.issued2017
dc.degree.disciplineMathematicsen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractThe topic of study of this thesis belongs both to knot theory and to group theory. A knot is a smooth embedding of a circle in $\mathbb{R}^3$ or $S^3=\mathbb{R}^3\cup\{+\infty\}$. With any knot $K$ we can do an operation which depends on two integer coefficients $p$ and $q$, called $\frac{p}{q}$ Dehn surgery, resulting in a 3-manifold $M$ denoted by $M:=S^3(K,\frac{p}{q})$. A group is left-orderable if it can be given a total strict ordering which is invariant under multiplication from the left. It is hard to understand Dehn surgery geometrically, but algebraically it is clear - the fundamental group $\pi_1(M)$ equals to the fundamental group of the knot complement of $K$ with one relation added. Although the fundamental group of the knot complement is always left-orderable, $\pi_1(M)$ may not be left-orderable. We study left-orderability of $\pi_1(M)$ in case where $K$ is a twisted torus knot.en_US
dc.description.noteOctober 2017en_US
dc.identifier.urihttp://hdl.handle.net/1993/32614
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectKnot theoryen_US
dc.subjectDehn surgeryen_US
dc.subjectOrderable groupen_US
dc.subject3-manifolden_US
dc.titleNon-left-orderable surgeries of twisted torus knotsen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 5 of 23
Loading...
Thumbnail Image
Name:
Dovhyi_Serhii.pdf
Size:
501.35 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
figure_2_1.pdf
Size:
2.5 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
figure_2_2.png
Size:
14.67 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
figure_2_3.pdf
Size:
2.75 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
figure_2_4.pdf
Size:
2.53 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: