Assessment of Sediments in the Riverine Impoundments of National Wildlife Refuges in the Souris River Basin, North Dakota

Thumbnail Image
Tangen, Brian A.
Laubhan, Murray K.
Gleason, Robert A.
Journal Title
Journal ISSN
Volume Title
United States Geological Survey
Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of core characteristics along the depth profile suggests that there has been regular sediment mixing and removal, as well as non-uniform sediment deposition with time. Estimated mean accretion rates based on the three methods of determination (two time markers for 137Cs, 210Pb) ranged from 0.22–0.35 centimeters per year, and approximately 70 percent of cores had less 137Cs than expected. Concentrations of sediment-associated elements generally were within reported reference ranges, and all agrichemicals analyzed were below detection limits. Results suggest that there does not appear to be widespread sediment accumulation in impoundments of the Souris River Basin refuges. In addition, there were no identifiable patterns among sedimentation rates from the upstream (Des Lacs, Upper Souris) to the downstream (J. Clark Salyer) refuges. There were, however, apparent upstream to downstream patterns of increased concentrations of some elements (for example, aluminum, boron, and vanadium) that may warrant further exploration. Future related monitoring and research efforts should focus on areas with high potential for sediment accumulation, such as upstream areas adjacent to dams, to identify potential sediment problems before they become too severe. Further, assessments of suspended sediments transported in the Des Lacs and Souris Rivers would augment interpretation of sedimentation data by identifying potential sediment sources and areas with the greatest potential for accumulation.
Find online at
Sediments, Riverine Impoundment, National Wildlife Refuge, Souris River, Lake Winnipeg Basin, North Dakota
Tangen, B.A., Laubhan, M.K., and Gleason, R.A., 2014, Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota: U.S. Geological Survey Scientific Investigations Report 2014–5018, 37 p.,