Proteomics and metabolism of the mesophilic cellulolytic bacterium, Clostridium termitidis strain CT1112

dc.contributor.authorRamachandran, Umesh
dc.contributor.examiningcommitteeCicek, Nazim (Biosystems Engineering) Sparling, Richard (Microbiology) Hallenbeck, Patrick C.(Microbiology and Immunology, University of Montreal)en_US
dc.contributor.supervisorLevin, David B. (Biosystems Engineering)en_US
dc.date.accessioned2013-09-27T13:41:28Z
dc.date.available2013-09-27T13:41:28Z
dc.date.issued2008-11-05en_US
dc.degree.disciplineBiosystems Engineeringen_US
dc.degree.levelDoctor of Philosophy (Ph.D.)en_US
dc.description.abstractConsolidated bioprocessing, a method that involves cellulase production, substrate hydrolysis, and fermentation all in one step, requires lower energy input and aims at achieving reduced biofuel production costs than traditional processes. It is an economically appealing strategy for the efficient production of biofuels such as ethanol or H2. At present, the yields of fermentative hydrogen and ethanol production are less than the theoretical maximum and vary between anaerobic Clostridia due to the presence of highly branched metabolic pathways. With the recent advancements in ‘Omic technologies, the selected cellulolytic species, in this case, C. termitidis, was extensively studied to identify the key enzymes that are involved in hydrogen and ethanol synthesis pathways in both the genome and proteome under different culture conditions. Metabolic characterization involving growth and end-product synthesis patterns were performed on 2 g L-1 cellobiose and α-cellulose under batch conditions to determine its metabolic potential for hydrogen and/or ethanol production. Initial characterization has shown the ability of C. termitidis to produce hydrogen, ethanol, and various other end-products on the two susbtrates. Continous N2 sparging in the pH-controlled bioreactors with cellobiose and α-cellulose showed a consistent increase in the H2 synthesis and lowered ethanol production compared to batch studies, with the H2 yields of 1.03 and 1.34 mol product per mol hexose equivalent added, respectively. Shotgun 2-D proteome analyses were performed to compare cellulose versus cellobiose grown cultures across exponential and stationary phases of growth. Most of the glycolytic proteins were detected in the proteome with some exceptions and no significant change was observed across both growth conditions. Hydrogen synthesis was regulatd via PFOR and ferredoxin-dependent hydrogenase, where as ethanol synthesis was regulated primarily via bifunctional AdhE activity. Proteomic analyses of C. termitidis cultured on hexose sugars in the absence of xylose suggested possible sequential utilization of xylose and cellobiose for the first time. Putative proteins consistent with xylose fermentation were observed at high levels. The hypothesis that C. termitidis can sequentially utilize xylose and cellobiose was further validated using batch fermentations tests on pure (xylose, cellobiose, xylan) and mixed substrates (xylose + cellobiose).en_US
dc.description.noteFebruary 2014en_US
dc.identifier.citationRamachandran, U., Wrana, N., Cicek, N., Sparling, R., Levin, D.B. 2008. Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or α-cellulose. International Journal of Hydrogen Energy, 33 (23), 7006-7012.en_US
dc.identifier.urihttp://hdl.handle.net/1993/22211
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsopen accessen_US
dc.subjectBiofuelsen_US
dc.subjectCellulolytic Clostridiaen_US
dc.subjectMetabolismen_US
dc.subjectProteomicsen_US
dc.subjectHydrogenen_US
dc.subjectEthanolen_US
dc.titleProteomics and metabolism of the mesophilic cellulolytic bacterium, Clostridium termitidis strain CT1112en_US
dc.typedoctoral thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ramachandran_Umesh.pdf
Size:
8.51 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.25 KB
Format:
Item-specific license agreed to upon submission
Description: