Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling

dc.contributor.authorDay, Jacqueline
dc.contributor.authorGietz, Roman D
dc.contributor.authorRampitsch, Christof
dc.date.accessioned2015-02-12T21:43:43Z
dc.date.available2015-02-12T21:43:43Z
dc.date.issued2015-02-05
dc.date.updated2015-02-11T20:15:42Z
dc.description.abstractAbstract Background Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells through a putative toxin-receptor and localizes with chloroplasts, ultimately causing damage and necrosis on leaves. These symptoms can occur even in the absence of the pathogen. Insensitive cultivars lack the receptor and Ptr ToxA cannot enter cells. The molecular mechanisms surrounding this plant-pathogen interaction are still largely unknown, although some details have begun to emerge. Results Using 2-D electrophoresis, fifteen protein changes were identified reproducibly in the leaf proteomes of a sensitive and an insensitive cultivar over three days after inoculation of purified Ptr ToxA. Functional analysis of the proteins indicated that senescence signals may be induced in the sensitive cultivar. In the insensitive cultivar proteins involved in some features of senescence inhibition were seen. Complementary responses at the biochemical level may be actively promoting a localized senescence-like response in sensitive wheat cultivars whilst actively inhibiting this response in insensitive cultivars. Conclusion This is the first report of a biochemical response in an insensitive cultivar in this plant-pathogen interaction. Findings support the involvement of ethylene, and the activation of complementary pathways in sensitive versus insensitive wheat cultivars responding to Ptr ToxA. The nature of the system permits using purified toxin to mimic disease, which eliminates the pathogen proteome and ensures a synchronous response in inoculated leaves.
dc.description.versionPeer Reviewed
dc.identifier.citationProteome Science. 2015 Feb 05;13(1):3
dc.identifier.doihttp://dx.doi.org/10.1186/s12953-014-0060-3
dc.identifier.urihttp://hdl.handle.net/1993/30278
dc.language.rfc3066en
dc.rightsopen accessen_US
dc.rights.holderJacqueline Day et al.; licensee BioMed Central Ltd.
dc.titleProteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
s12953-014-0060-3.xml
Size:
140.82 KB
Format:
Extensible Markup Language
Description:
Loading...
Thumbnail Image
Name:
s12953-014-0060-3.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
s12953-014-0060-3-S1.xlsx
Size:
21.17 KB
Format:
Unknown data format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.17 KB
Format:
Item-specific license agreed to upon submission
Description: