Joint beamforming, channel and power allocation in multi-user and multi-channel underlay MISO cognitive radio networks

Thumbnail Image
Dadallage, Suren Tharanga Darshana
Journal Title
Journal ISSN
Volume Title
In this thesis, we consider joint beamforming, power, and channel allocation in a multi-user and multi-channel underlay cognitive radio network (CRN). In this system, beamforming is implemented at each SU-TX to minimize the co-channel interference. The formulated joint optimization problem is a non-convex, mixed integer nonlinear programming (MINLP) problem. We propose a solution which consists of two stages. At first, given a channel allocation, a feasible solutions for power and beamforming vectors are derived by converting the problem into a convex form with an introduced optimal auxiliary variable and semidefinite relaxation (SDR) approach. Next, two explicit searching algorithms, i.e., genetic algorithm (GA) and simulated annealing (SA)-based algorithm are proposed to determine optimal channel allocations. Simulation results show that beamforming, power and channel allocation with SA (BPCA-SA) algorithm achieves a close optimal sum-rate with a lower computational complexity compared with beamforming, power and channel allocation with GA (BPCA-GA) algorithm. Furthermore, our proposed allocation scheme shows significant improvement than zero-forcing beamforming (ZFBF).
Cognitive radio network, beamforming, semidefinite relaxation, genetic algorithm, simulated annealing