LL-37 and citrullinated-LL-37 modulate IL-17A/F-mediated responses and selectively suppress Lipocalin-2 in bronchial epithelial cells

Loading...
Thumbnail Image
Date
2025-05-23
Authors
Altieri, Anthony
Lloyd, Dylan
Ramotar, Padmanie
van der Does, Anne M.
Hemshekhar, Mahadevappa
Mookherjee, Neeloffer
Journal Title
Journal ISSN
Volume Title
Publisher
BMC
Abstract

Abstract Background Levels of the human cationic antimicrobial host defence peptide LL-37 are enhanced in the lungs during neutrophilic airway inflammation. LL-37 drives Th17 differentiation, and Th17 cells produce IL-17A and IL-17F which form the biologically active heterodimer IL-17A/F. While IL-17 is a critical mediator of neutrophilic airway inflammation, LL-37 exhibits contradictory functions; LL-37 can both promote and mitigate neutrophil recruitment depending on the inflammatory milieu. The impact of LL-37 on IL-17-induced responses in the context of airway inflammation remains largely unknown. Therefore, we examined signaling intermediates and downstream responses mediated by the interplay of IL-17A/F and LL-37 in human bronchial epithelial cells (HBEC). As LL-37 can become citrullinated during airway inflammation, we also examined LL-37-mediated downstream responses compared to that with citrullinated LL-37 (citLL-37) in HBEC. Results Using an aptamer-based proteomics approach, we identified proteins that are altered in response to IL-17A/F in HBEC. Proteins enhanced in response to IL-17A/F were primarily neutrophil chemoattractants, including chemokines and proteins associated with neutrophil migration such as lipocalin-2 (LCN-2). We showed that selective depletion of LCN-2 mitigates neutrophil migration, functionally demonstrating LCN-2 as a critical neutrophil chemoattractant. We further demonstrated that LL-37 and citLL-37 selectively suppress IL-17A/F-induced LCN-2 abundance in HBEC. Mechanistic studies revealed that LL-37 and citLL-37 suppresses IL-17 A/F-mediated enhancement of C/EBPβ, a transcription factor required for LCN-2 production. In contrast, LL-37 and citLL-37 enhance the abundance of ribonuclease Regnase-1, which is a negative regulator of IL-17 and LCN-2 in HBEC. In an animal model of allergen-challenged airway inflammation with elevated IL-17A/F and neutrophil elastase in the lungs, we demonstrated that CRAMP (mouse orthologue of LL-37) negatively correlates with LCN-2. Conclusions Overall, our findings showed that LL-37 and citLL-37 can selectively suppress the abundance of IL-17A/F-mediated LCN-2, a protein that is critical for neutrophil migration in HBEC. These results suggest that LL-37, and its modified citrullinated form, have the potential to negatively regulate IL-17-mediated neutrophil migration during airway inflammation. To our knowledge, this is the first study to report that the immunomodulatory function of LL-37 enhances the RNA binding protein Regnase-1, suggesting that a post-transcriptional mechanism of action is mediated by the peptide.

Description
Keywords
LL-37, IL-17, Lung, Lipocalin-2, Regnase-1
Citation
Journal of Inflammation. 2025 May 23;22(1):20