Cognitive machine learning -- an intelligent approach for dimensionality reduction of internet datasets

dc.contributor.authorKaleem, Danish
dc.contributor.examiningcommitteeMcLeod, Bob (Electrical and Computer Engineering) Wang, Yang (Computer Science)en_US
dc.contributor.supervisorFerens, Ken (Electrical and Computer Engineering)en_US
dc.date.accessioned2018-08-22T16:22:27Z
dc.date.available2018-08-22T16:22:27Z
dc.date.issued2018-08-08en_US
dc.date.submitted2018-08-08T20:51:22Zen
dc.date.submitted2018-08-22T15:12:36Zen
dc.degree.disciplineElectrical and Computer Engineeringen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractHigh-dimensional data has always been a serious problem especially when the dataset has many irrelevant attributes. With the advancement of internet and cloud computing platforms, an exceptional rise has been recorded in the complexity of internet data attributes. Furthermore, in the domain of cyber security, modern data sets are highly disorganized and carry massive information to define a single event. Nonetheless, inspection of such dispersed high-dimensional data sets requires terrific human expertise and time. The contemporary machine learning techniques have great potential to deduce the relevant information from data sets, however, human cognition is always needed as an input to learning algorithms before training phase. Therefore, conventional models collapse in pruning redundant information from data sets due to the absence of a cognitive point of view. This thesis proposes a novel fractal based cognitive model to reduce the dimensionality of two different internet data sets. The aim of the proposed research is to automate raw data attributes selection using ANN and cognitive aspects. Furthermore, the overall computational complexity of the proposed model has been reduced by pruning redundant hidden neurons of ANN. Hence, experimental results demonstrate that fractal based cognitive model selects only 7 relevant attributes from a dataset of 155, and shortlists 17 attributes from another dataset of 49 attributes. Moreover, hidden neurons pruning mechanism eliminates 108 useless neurons from a single hidden layer of 154 neurons while maintaining the maximum classification accuracy of 99.2%.en_US
dc.description.noteOctober 2018en_US
dc.identifier.citationDanish Kaleem and Ken Ferens, "A cognitive approach for attribute selection in internet dataset," in 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 2017.en_US
dc.identifier.urihttp://hdl.handle.net/1993/33220
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectHigh-dimensional datasetsen_US
dc.subjectArtificial neural networksen_US
dc.subjectMultiscaleen_US
dc.subjectFractal dimensionen_US
dc.subjectMachine learningen_US
dc.subjectSensitivity-based pruningen_US
dc.subjectNeural networks pruningen_US
dc.subjectComplexity analysisen_US
dc.subjectCognitive intelligenceen_US
dc.subjectAWID dataseten_US
dc.subjectInternet datasetsen_US
dc.titleCognitive machine learning -- an intelligent approach for dimensionality reduction of internet datasetsen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kaleem_Danish.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: