A structural examination of the Crimean-Congo Hemorrhagic Fever Virus Otu protease domain in the presence of the Ubiquitin and ISG15 substrates

Thumbnail Image
James, Terrence
Journal Title
Journal ISSN
Volume Title
Immune cytokines tumor necrosis factor alpha and type I interferons provide front-line defense against viral infection and are regulated in part by ubiquitin (Ub) and Ub-like molecules. Ubiquitin and Ub-like molecule ISG15 share a conserved C-terminal motif where a terminal glycine residue becomes attached to cellular target proteins. Nairoviruses and arteriviruses contain an ovarian tumor domain-containing protease (OTU protease) that was found to corrupt pathways by removing Ub or ISG15 from target proteins. This broad substrate specificity is unlike mammalian deubiquitinating enzymes, which cannot recognize both substrates. To understand how viral OTU domain-containing proteases remove Ub and ISG15, the crystal structure of the Crimean-Congo Heamorhaggic Fever nairovirus (CCHFV) was determined with Ub to 2.5 Å resolution. A computational model was built of the CCHFV Otu protease bound to ISG15 as well. The CCHFV Otu protease has several structural differences from known OTU proteases, manifesting in its broad substrate recognition capability.
Crimean-Congo Hemorrhagic Fever Virus, Ovarian Tumor protease, Ubiquitin, ISG15, Deubiquitination, crystal structure