• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kalman filtering beyond Gaussian innovation processes

    View/Open
    Thesis (819.8Kb)
    Date
    2022-12
    Author
    Gao, Tiancheng
    Metadata
    Show full item record
    Abstract
    Estimating time-varying signals becomes particularly challenging under non Gaussian innovation processes such as sparse and rapidly time-varying noise dynamics. In this thesis, by building upon the recent progress in the approximate message passing (AMP) algorithms, the vector AMP (VAMP) algorithm is unified with the Kalman filter (KF) into a common message passing framework that we coin VAMP-KF. The advantage of VAMP-KF is that it does not restrict the innovation dynamics to have a specific structure (e.g., same support over time when the innovation is sparse), thereby accounting for uncorrelated noise dynamics without the need of explicit innovation correlation modelling. For the sake of theoretical performance prediction, we conduct a state evolution (SE) analysis of the proposed algorithm and show its consistency with the asymptotic empirical mean-squared error (MSE). Numerical results on various rapidly time-varying innovation dynamics (e.g., with different sparsity rates) demonstrate unambiguously the effectiveness of the proposed VAMP-KF algorithm and its superiority over state of-the-art algorithms both in terms of reconstruction accuracy and computational complexity.
    URI
    http://hdl.handle.net/1993/37086
    Collections
    • FGS - Electronic Theses and Practica [25517]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV