• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of line-source-fed single-layer microstrip reflectarrays

    Thumbnail
    View/Open
    NQ62669.pdf (7.771Mb)
    Date
    2001-05-01
    Author
    Sze, Kin Yip
    Metadata
    Show full item record
    Abstract
    The analysis of scattering from an infinite periodic array of microstrip patches is used to study line-source-fed single-layer microstrip reflectarrays. An application of these reflectarrays is in high-gain conformal antennas. Employing rectangular patch geometries in the modelling, reflection phase properties of the reflectarrays are rigorously investigated. Effect of important parameters, such as, patch dimension, substrate permittivity and thickness, are examined. Included in the study is the effect of unattainable reflection phase on phase correction errors and far-field radiation characteristics. A formulation based on phased array and aperture theories is derived for the far-field analysis. For the analysis of an infinite periodic array of single-layer rectangular microstrip patches, an empirical expression is formulated for approximating the TE-to-z reflection coefficient phase with the incident angle. Also, for computing individual reflectarray far-field terms, simple symmetry formulations are presented. In addition, multiple patch geometries for the reflectarray are examined. A new hat-shaped patch geometry is introduced in combination with rectangular patch array, for enhanced performance. Far-field radiation characteristics, using tapered distribution schemes for line-source excitations, are compared with those of the uniform distribution. Subsequently, an offset-fed reflectarray is also proposed.
    URI
    http://hdl.handle.net/1993/2017
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV