Faculty of Science
Permanent URI for this community
Browse
Browsing Faculty of Science by Author "Arino, Julien"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessQuantifying the annual incidence and underestimation of seasonal influenza: A modelling approach(2020-07-10) McCarthy, Zachary; Athar, Safia; Alavinejad, Mahnaz; Chow, Christopher; Moyles, Iain; Nah, Kyeongah; Kong, Jude D; Agrawal, Nishant; Jaber, Ahmed; Keane, Laura; Liu, Sam; Nahirniak, Myles; Jean, Danielle S; Romanescu, Razvan; Stockdale, Jessica; Seet, Bruce T; Coudeville, Laurent; Thommes, Edward; Taurel, Anne-Frieda; Lee, Jason; Shin, Thomas; Arino, Julien; Heffernan, Jane; Chit, Ayman; Wu, JianhongAbstract Background Seasonal influenza poses a significant public health and economic burden, associated with the outcome of infection and resulting complications. The true burden of the disease is difficult to capture due to the wide range of presentation, from asymptomatic cases to non-respiratory complications such as cardiovascular events, and its seasonal variability. An understanding of the magnitude of the true annual incidence of influenza is important to support prevention and control policy development and to evaluate the impact of preventative measures such as vaccination. Methods We use a dynamic disease transmission model, laboratory-confirmed influenza surveillance data, and randomized-controlled trial (RCT) data to quantify the underestimation factor, expansion factor, and symptomatic influenza illnesses in the US and Canada during the 2011-2012 and 2012-2013 influenza seasons. Results Based on 2 case definitions, we estimate between 0.42−3.2% and 0.33−1.2% of symptomatic influenza illnesses were laboratory-confirmed in Canada during the 2011-2012 and 2012-2013 seasons, respectively. In the US, we estimate between 0.08−0.61% and 0.07−0.33% of symptomatic influenza illnesses were laboratory-confirmed in the 2011-2012 and 2012-2013 seasons, respectively. We estimated the symptomatic influenza illnesses in Canada to be 0.32−2.4 million in 2011-2012 and 1.8−8.2 million in 2012-2013. In the US, we estimate the number of symptomatic influenza illnesses to be 4.4−34 million in 2011-2012 and 23−102 million in 2012-2013. Conclusions We illustrate that monitoring a representative group within a population may aid in effectively modelling the transmission of infectious diseases such as influenza. In particular, the utilization of RCTs in models may enhance the accuracy of epidemiological parameter estimation.
- ItemOpen AccessStrategies for the Use of Oseltamivir and Zanamivir during Pandemic Outbreaks(2010-1-1) Hansen, Elsa; Day, Troy; Arino, Julien; Wu, Jianhong; Moghadas, Seyed MBACKGROUND: The use of neuraminidase inhibitors (oseltamivir and zanamivir) for the treatment of ill individuals has been an important intervention during the 2009 H1N1 pandemic. However, the emergence and spread of drug resistance remains a major concern and, therefore, optimizing antiviral strategies is crucial to retain the long-term effectiveness of these pharmaceutical interventions.METHODS: A dynamic model of disease transmission was developed to investigate optimal scenarios for the use of a secondary drug (eg, zanamivir). Considering both small and large stockpiles, attack rates were projected by simulating the model to identify ‘tipping points’ for switching to zanamivir as resistance to oseltamivir develops.RESULTS: The use of a limited stockpile of zanamivir can substantially reduce the overall attack rate during pandemic outbreaks. For a reasonably large stockpile of zanamivir, it is optimal to delay the use of this drug for a certain amount of time during which oseltamivir is used as the primary drug. For smaller stockpiles, however, earlier use of zanamivir will be most effective in reducing the overall attack rate. Given a limited stockpile of zanamivir (1.8% in the Canadian plan) without replenishment, and assuming that the fraction of ill individuals being treated is maintained below 60%, the results suggest that zanamivir should be dispensed as the primary drug for thresholds of the cumulative number of oseltamivir resistance below 20%.INTERPRETATION: Strategic use of a secondary drug becomes crucial for pandemic mitigation if vaccination and other interventions fail to sufficiently reduce disease transmission in the community. These findings highlight the importance of enhanced surveillance and clinical monitoring for rapid identification of resistance emergence and its population incidence, so that optimal timing for adaptation to the use of drugs can be achieved.