• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic wireless access methods with applications to eHealth services

    Thumbnail
    View/Open
    Phunchongharn_Phond.pdf (1.749Mb)
    Date
    2012-06
    2011-12
    2011-06
    2012-05
    2011-11
    2010-04
    2010-02
    2009
    Author
    Phunchongharn, Phond
    Metadata
    Show full item record
    Abstract
    For opportunistic spectrum access and spectrum sharing in cognitive radio networks, one key problem is how to develop wireless access schemes for secondary users so that harmful interference to primary users can be avoided and quality-of-service (QoS) of secondary users can be guaranteed. In this research, dynamic wireless access protocols for secondary users are designed and optimized for both infrastructure-based and ad-hoc wireless networks. Under the infrastructure-based model, the secondary users are connected through a controller (i.e., an access point). In particular, the problem of wireless access for eHealth applications is considered. In a single service cell, an innovative wireless access scheme, called electromagnetic interference (EMI)-aware prioritized wireless access, is proposed to address the issues of EMI to the medical devices and QoS differentiation for different eHealth applications. Afterwards, the resource management problem for multiple service cells, specifically, in multiple spatial reuse time-division multiple access (STDMA) networks is addressed. The problem is formulated as a dual objective optimization problem that maximizes the spectrum utilization of secondary users and minimizes their power consumption subject to the EMI constraints for active and passive medical devices and minimum throughput guarantee for secondary users. Joint scheduling and power control algorithms based on greedy approaches are proposed to solve the problem with much less computational complexity. In an ad-hoc wireless network, the robust transmission scheduling and power control problem for collision-free spectrum sharing between secondary and primary users in STDMA wireless networks is investigated. Traditionally, the problem only considers the average link gains; therefore, QoS violation can occur due to improper power allocation with respect to instantaneous channel gain realization. To overcome this problem, a robust power control problem is formulated. A column generation based algorithm is proposed to solve the problem by considering only the potential subset of variables when solving the problem. To increase the scalability, a novel distributed two-stage algorithm based on the distributed column generation method is then proposed to obtain the near-optimal solution of the robust transmission schedules for vertical spectrum sharing in an ad-hoc wireless network.
    URI
    http://hdl.handle.net/1993/9231
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV