• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Positron annihilation investigation of electron irradiated silicon

    Thumbnail
    View/Open
    mq23204.pdf (4.607Mb)
    Date
    1997-02-01
    Author
    Avalos, Victor P.
    Metadata
    Show full item record
    Abstract
    Positron annihilation experiments which combine lifetime and doppler broadening measurements were performed using 10 MeV electron-irradiated Float-zone (Fz) and Czochralski silicon (Cz). In the case of irradiated float-zone Si, a lifetime of 305 ps is observed at 300 K decreasing from 290 ps at 30 K, and the positron trapping rate decreases strongly with increasing temperature. The Doppler measurements yield, when coupled with lifetime data, a S-value 6.7% larger than that for the bulk which is nearly twice the value hitherto claimed for divacancies. Isochronal annealing of the 1.8 $\mu$m infrared absorption band is accompanied by a significant change in the defect S-value to 3.8% larger than for the bulk. For the Cz-silicon, a set of rectangular wafers of n-type (P, Sb doped) and p-type (B doped) at various concentration levels and irradiated to a fluence of $\rm 1.2\times 10\sp{18}e\sp-/cm\sp2$ were investigated as a function of temperature and position dependence. The low dopant concentration samples of p-type or n-type present a dominance of negative divacancy defects, due to a lifetime of $\sim$300 ps, a strong temperature dependence of the trapping rate and a $\rm S\sb{D}/S\sb{B}$ value 1.07. For the middle concentration materials, we proposed that the formation of neutral $\rm PV\sb2,\ BV\sb2$ and SbV$\sb2$ type defects would explain the strong temperature dependence of the lifetime while maintaining constant trapping rate. In the lighly doped n- or p-type samples (both with $\rm 5\times 10\sp{18}/cm\sp3)$, the n-type (P-doped) shows a dominance of VP pairs, which are stable at room temperature. (Abstract shortened by UMI.)
    URI
    http://hdl.handle.net/1993/819
    Collections
    • FGS - Electronic Theses and Practica [25535]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV