Show simple item record

dc.contributor.supervisorLeung, Carson K. (Computer Science)en_US
dc.contributor.authorJiang, Fan
dc.date.accessioned2012-04-03T13:35:29Z
dc.date.available2012-04-03T13:35:29Z
dc.date.issued2011en_US
dc.identifier.citationLeung, C.K.-S., Jiang, F. (2011) Frequent pattern mining from time-fading streams of uncertain data. In Proc. DaWaK 2011: 252-264. Springer.en_US
dc.identifier.citationLeung, C.K.-S., Jiang, F., Hayduk, Y. (2011) A landmark-model based system for mining frequent patterns from uncertain data streams. In Proc. IDEAS 2011: 249-250. ACM.en_US
dc.identifier.citationLeung, C.K.-S., Jiang, F. (2011) Frequent itemset mining of uncertain data streams using the damped window model. In Proc. ACM SAC 2011: 950-955. ACM.en_US
dc.identifier.urihttp://hdl.handle.net/1993/5233
dc.description.abstractWhen dealing with uncertain data, users may not be certain about the presence of an item in the database. For example, due to inherent instrumental imprecision or errors, data collected by sensors are usually uncertain. In various real-life applications, uncertain databases are not necessarily static, new data may come continuously and at a rapid rate. These uncertain data can come in batches, which forms a data stream. To discover useful knowledge in the form of frequent patterns from streams of uncertain data, algorithms have been developed to use the sliding window model for processing and mining data streams. However, for some applications, the landmark window model and the time-fading model are more appropriate. In this M.Sc. thesis, I propose tree-based algorithms that use the landmark window model or the time-fading model to mine frequent patterns from streams of uncertain data. Experimental results show the effectiveness of our algorithms.en_US
dc.language.isoengen_US
dc.publisherSpringer-Verlagen_US
dc.publisherACMen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectData miningen_US
dc.subjectDatabasesen_US
dc.titleFrequent pattern mining of uncertain data streamsen_US
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typemaster thesisen_US
dc.degree.disciplineComputer Scienceen_US
dc.contributor.examiningcommitteeDomaratzki, Michael (Computer Science) Wang, Xikui (Statistics)en_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.noteMay 2012en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record