• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of cold acclimatization on nutrient utilization and enteric methane emissions of beef cows overwintered on low-quality forage diets supplemented with dried distillers grain with solubles

    Thumbnail
    View/Open
    Bernier_Jennilee_M.Sc.Thesis_15Sept2011.pdf (1.160Mb)
    Date
    2011-09-21
    Author
    Bernier, Jennilee
    Metadata
    Show full item record
    Abstract
    This study was conducted to determine if nutrient utilization and enteric methane (CH4) emissions could be improved in overwintering beef cows consuming low-quality forage supplemented with protein in the form of dried distillers grain with solubles (DDGS) in thermal-neutral and cold-stressed environments. Thirty mature, dry and non-pregnant beef cows were divided into three treatment groups and fed diets consisting of low-quality (6.0% crude protein; CP) forage with no DDGS (control, CON), 10% DDGS (borderline sufficient CP, 8.7% CP), or 20% DDGS (excess CP, 11.6% CP). Cold acclimatization did not appear to affect nutrient intake and digestibility by beef cows, but increased N and P excretion by 1.2x and 2.5x, respectively. Cold acclimatized cows reduced energy excretion by 26.8% (7.1 vs. 5.2 ± 0.30% GEI in fall and winter, respectively; P < 0.0001) in accordance with a 33.8% increase in rumen fluid rate of passage (ROP). Supplementation with DDGS improved digestibility of N and P (40.6 vs. 61.2 ± 2.45% N and -23.9 vs. 5.7 ± 5.95% P for CON and 20%DDGS, respectively; P < 0.0001) by increasing digestible substrate in the diet. Protein supplementation increased rumen NH3-N concentrations (1.5, 2.1 and 3.1 ± 0.15 mg 100 mL-1; P < 0.0001) enough to increase rumen fermentation efficiency, resulting in 18.5% lower enteric CH4 emissions when CP was fed in excess of animal requirements. Total excretion of N and P were increased two- and 45-fold, respectively, when excess CP was fed. Reduced enteric CH4 emissions as a result of cold acclimatization suggest an advantage for the Canadian beef herd in terms of environmental sustainability. Supplementing CP in excess of cow requirements may improve nutrient utilization and rumen fermentation efficiency, and mitigate enteric CH4 emissions in beef cows fed low-quality forage diets, but may also contribute to greater N and P loading of soil and ground water.
    URI
    http://hdl.handle.net/1993/4938
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV