• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physicochemical, functional and in vitro bioactive properties of hempseed (Cannabis sativa) protein isolates and hydrolysates.

    Thumbnail
    View/Open
    isinguzo_grace.pdf (1.093Mb)
    Date
    2011-08-29
    Author
    Isinguzo, Grace
    Metadata
    Show full item record
    Abstract
    Apart from the nutritional importance of proteins, their physicochemical, functional and bioactive properties are dependent on their structure as well as their resultant interactions with other proteins, water and lipids. We investigated the physicochemical and functional properties of hempseed protein isolate as well the bioactive properties of hemp seed protein hydrolysates (HPH) using antioxidant and antihypertensive assays. The results show that molecular mass decreased with increase in time of hydrolysis. Alcalase treated HPH had an increase in surface hydrophobicity. Increase in hydrolysis time increased protein solubility and water holding capacity of HPH, while foaming and fat absorption capacity decreased as time of hydrolysis increased. The <3 kDa permeates of thermolysin hydrolysate had the highest ACE-inhibition activity, while the <5 kDa permeates of alcalase hydrolysates had the highest renin inhibition value. The various fractions showed low scavenging activity of 1,1–diphenyl-2-picrylhydrazyl, while the superoxide radical scavenging activities were weak to nil. The three various fractions of thermolysin treated hydrolysates displayed the strongest chelating activity. For ferric reducing activities, <5 kDa thermolysin fraction was relatively high when compared to glutathione. The work concluded that HPH can be used not only as a source of nutrients but also as a functional ingredient in food systems as well as therapeutic agent against chronic diseases such as hypertension and oxidative stress-related disorders.
    URI
    http://hdl.handle.net/1993/4783
    Collections
    • FGS - Electronic Theses and Practica [25066]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV