• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Seismic Behaviour of Exterior Beam-Column Joints Reinforced with FRP Bars and Stirrups

    Thumbnail
    View/Open
    Mady_Mohamed.pdf (6.222Mb)
    Date
    2011-08-25
    Author
    Mady, Mohamed Hassan Abdelhamed
    Metadata
    Show full item record
    Abstract
    Reinforced concrete beam-column joints (BCJs) are commonly used in structures such as parking garages, multi-storey industrial buildings and road overpasses, which might be exposed to extreme weathering conditions and the application of de-icing salts. The use of the non-corrodible fiber-reinforced polymer (FRP) reinforcing bars in such structures is beneficial to overcome the steel-corrosion problems. However, FRP materials exhibit linear-elastic stress-strain characteristics up to failure, which raises concerns on their performance in BCJs where energy dissipation, through plastic behaviour, is required. The objective of this research project is to assess the seismic behaviour of concrete BCJs reinforced with FRP bars and stirrups. An experimental program was conducted at the University of Manitoba to participate in achieving this objective. Eight full-scale exterior T-shaped BCJs prototypes were constructed and tested under simulated seismic load conditions. The longitudinal and transversal reinforcement types and ratios for the beam and the columns were the main investigated parameters. The experimental results showed that the GFRP reinforced joints can successfully sustain a 4.0% drift ratio without any significant residual deformation. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the BCJs subjected to seismic-type loading. It was also concluded that, increasing the beam reinforcement ratio, while satisfying the strong column-weak beam concept, can enhance the ability of the joint to dissipate seismic energy. An analytical investigation was conducted through constructing a finite element model using ANSYS-software. The model was verified against the experimental results in this research. Then, a parametric study was performed on number of different parameters known to affect such joints including column axial load, concrete compressive strength, flexural strength ratio and joint transverse reinforcement. It was concluded that 70% of the column axial load capacity can be recommended as an upper limit to the applied axial loads on the column to avoid damage occurrence within the joint. It was also concluded that a minimum flexural strength ratio of 1.50 is recommended to ensure the strong-column weak-beam mechanism. In addition, a minimum joint transverse reinforcement ratio of 0.60% is recommended to insure that the failure will not occur in the joint zone.
    URI
    http://hdl.handle.net/1993/4773
    Collections
    • FGS - Electronic Theses and Practica [25525]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV