• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perennial legume phase and annual crop rotation influences on CO2 and N2O fluxes over two years in the Red River Valley, Manitoba, Canada

    Thumbnail
    View/Open
    Stewart_Siobhan.pdf (1.192Mb)
    Date
    2011-01-18
    Author
    Stewart, Siobhan Elaine
    Metadata
    Show full item record
    Abstract
    Studies have shown that including perennial forages in cropping rotations can increase soil carbon (C) and lower nitrous oxide (N2O) emissions when compared to continuous annual cropping. Research is needed to evaluate the inclusion of a perennial forage in an annual crop rotation on net carbon dioxide (CO2) and N2O fluxes, natural and agronomic drivers of seasonal greenhouse gases (GHGs), and the possibility of using forages as a C sequestration-CO2 mitigation tool. A long-term field experiment site to determine GHG budgets for Red River Valley cropping systems in Manitoba, Canada was used. The site consisted of four plots with the same annual rotation management history. A perennial legume, alfalfa, was grown in 2008 and 2009 on two plots and spring wheat and industrial oilseed-rapeseed grown on the other two plots in 2008 and 2009, respectively. Nitrous oxide and CO2 fluxes were measured continuously using the flux gradient micrometeorological method. For the net study period, the perennial phase sequestered twice the atmospheric CO2 (2070 kg C ha-1) compared to the annual crops. The annual rotation emitted 3.5 times more N2O than the perennial legume phase. When accounting for harvest C removals and considering GHGs in CO2-equivalent (eq.), the perennial legume phase was a net sink of 5440 kg CO2-eq. ha-1 and the annual rotation was a net source of 4500 kg CO2-eq. ha-1 for the two year study period. Information gathered will help bridge missing data gaps in national emission trends and enhance development of Canadian GHG mitigation models.
    URI
    http://hdl.handle.net/1993/4366
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV