Mechanisms of stabilizing fibre-enriched acidified dairy products

Loading...
Thumbnail Image
Date
2011-01-17T18:14:52Z
Authors
Repin, Nikolay
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Acidified dairy products are one of the oldest types of food products. Unfortunately all of them are low in dietary fibre. Thus, to improve health benefit of these products the idea of fortifying them with dietary fibre seems attractive. However dairy products enriched with Glucagel (a commercial product that is high in barley β-glucan) were found to suffer from textural defects. When the Glucagel concentration exceeded a certain value (5 g/L), dramatic phase separation was observed in set yogurt and yogurt drink with volume fraction of casein micelles greater then 0.108. To investigate interactions of β-glucan polymers and casein micelles in the milk prior to setting of yogurt, mixtures of yogurt milk and Glucagel were systematically studied. Depending on the volume fraction of casein micelles and the Glucagel concentration, a stable phase or a gel or a sedimented material could exist. The driving force for phase separation was depletion flocculation of casein micelles in the presence of β-glucan. The phase separation responsible for textural defects in yogurt systems supplemented with high amounts of Glucagel can be avoided by the reduction of β-glucan molecular weight, a process that limits the range of attraction between micelles. Incubation of Glucagel with lichenase for 90 min resulted in homogeneous (stable) yogurt systems with Glucagel concentrations as high as 10 g/L.
Description
Keywords
β-glucan, yogurt, depletion flocculation
Citation