• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shape-preserving Interpolation with Biarcs and NURBS

    Thumbnail
    View/Open
    Thesis.pdf (711.6Kb)
    Date
    2010-04-09
    Author
    Anant, Unmesh
    Metadata
    Show full item record
    Abstract
    Non-Uniform Rational B-Splines (NURBS) curve has acquired great significance in the field of Computer Aided Design and Machining due to their ability to draw a large variety of shapes in an interactive computer graphics environment. A biarc curve is a composition of two circular arcs such that they are tangent continuous at the point of join. Biarcs have replaced traditionally used line segments in approximating curves and surfaces for generating tool paths of Computerised cutting machines called CNC (Computerised Numerical Controlled) machines. This is due to their ability to be at a greater proximity to the original curve with fewer number of segments. Since most of the machining tools can move only in straight lines and circular arcs, it is desirable that the tool paths be composed of biarcs and/or straight line segments. Shape preserving interpolation is a technique of drawing a curve through a set of points such that the shape represented by the data points are preserved. Both NURBS and biarc curves are not essentially shape preserving curves; however, if certain constraints are imposed on them, they are able to preserve the shape represented by the data points. This work proposes a technique that incorporates both NURBS and biarcs to perform the interpolation. The advantages are twofold; it acts as a common platform for the two techniques to operate together, which is novel, and the fitted NURBS curve can be approximated by biarcs, which has applications in the machining industry.
    URI
    http://hdl.handle.net/1993/3952
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV