• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation and Development of Algorithms and Techniques for Microwave Tomography

    Thumbnail
    View/Open
    Mojabi PhD Thesis Algorithms Techniques for Microwave Tomography.pdf (6.387Mb)
    Date
    2010-04-09
    Author
    Mojabi, Puyan
    Metadata
    Show full item record
    Abstract
    This thesis reports on research undertaken in the area of microwave tomography (MWT) where the goal is to find the dielectric profile of an object of interest using microwave measurements collected outside the object. The main focus of this research is on the development of inversion algorithms which solve the electromagnetic inverse scattering problem associated with MWT. Various regularization techniques for the Gauss-Newton inversion algorithm are studied and classified. It is shown that these regularization techniques can be viewed from within a single consistent framework after applying some modifications. Within the framework of the two-dimensional MWT problem, the inversion of transverse magnetic and transverse electric data sets are considered and compared in terms of computational complexity, image quality and convergence rate. A new solution to the contrast source inversion formulation of the microwave tomography problem for the case where the MWT chamber consists of a circular conductive enclosure is introduced. This solution is based on expressing the unknowns of the problem as truncated eigenfunction expansions corresponding to the Helmholtz operator for a homogeneous background medium with appropriate boundary conditions imposed at the chamber walls. The MWT problem is also formulated for MWT chambers made of conducting cylinders of arbitrary shapes. It is shown that collecting microwave scattered-field data inside MWT setups with different boundary conditions can provide a robust set of useful information for the reconstruction of the dielectric profile. This leads to a novel MWT setup wherein a rotatable conductive triangular enclosure is used to generate scattered-field data. Antenna arrays, with as few as only four elements, that are fixed with respect to the object of interest can provide sufficient data to give good reconstructions, if the triangular enclosure is rotated a sufficient number of times. Preliminary results of using the algorithms presented herein on data collected using two different MWT prototypes currently under development at the University of Manitoba are reported. Using the open-region MWT prototype, a resolution study using the Gauss-Newton inversion method was performed using various cylindrical targets.
    URI
    http://hdl.handle.net/1993/3946
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV