• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Satellite based remote sensing for estimating crop yield: examining the use of various functional forms and vegetation indices

    Thumbnail
    View/Open
    Shania Miralda's Thesis (2.951Mb)
    Date
    2022-08-25
    Author
    Miralda, Shania
    Metadata
    Show full item record
    Abstract
    This research includes two studies on estimating crop yield using satellite-based vegetation indices. For the first study, the objective is to compare eight different functional forms for estimating U.S crop yield using satellite based NDVI. For the second study, the objective is to examine 10 satellite-based vegetation indices for estimating U.S crop yield. For both studies, corn, soybeans, spring wheat, and winter wheat data for crop yield (bushel/acre) were obtained from the USDA NASS from 2008 to 2019 for a total of 12 years covering all 48 states in the United States except Hawaii and Alaska (though different states are included, based on where the crops are grown). Data for the vegetation indices were obtained from the MODIS satellite using 250m resolution level and selecting for maximum Vegetation Index values. The methodology used regression with crop yield as the dependent variable. The main independent variable is the selected vegetation index (e.g NDVI, GOSAVI, etc). A time trend variable is also included, and dummy variables for U.S States. Results for the first study indicated that relationship between NDVI and crop yield was mostly nonlinear, and piecewise regression was generally found to be the most suitable functional form. Results for the second study showed that for all 10 indices analyzed, that RDVI, GOSAVI, and GSAVI provided better estimates of crop yield than the commonly used NDVI. These results should be useful in providing a better understanding of various functional forms and various satellite based vegetation indices for improving crop yield estimation.
    URI
    http://hdl.handle.net/1993/36907
    Collections
    • FGS - Electronic Theses and Practica [25522]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV