• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Arbitrary mode-n convolution of physical tensors with applications in optics

    Thumbnail
    View/Open
    Thesis (3.056Mb)
    Date
    2022-08-23
    Author
    Noikorn, Pandhittaya
    Metadata
    Show full item record
    Abstract
    Multidimension functions frequently appear in Fourier Optics. For example, in a polychromatic optical system, one could have three spatial dimensions for space, one dimension for time, and one dimension for wavelength. Such systems would require multi-dimension mathematical models that could be efficiently analyzed or solved using Tensor Analysis. In Fourier Optics, convolution describes light propagation in multidimensional linear shift-invariant media and image formation in multidimensional linear shift-invariant imaging systems. In Tensor Analysis, many tensor operations, including convolution, are well defined in the literature. However, in this literature, tensor convolution is defined under three limiting assumptions 1) tensors to be convolved must have the same size; 2) tensors are expected to be convolved along all its dimensions; 3) tensors to be convolved should represent the same physical variables on each of its dimensions. In practice, one could possibly seek convolution along a specific subset of physical variables, which would not be well defined by this standard definition of tensor convolution. In this thesis, to overcome these limitations inherent in the definition of tensor convolution, we defined arbitrary mode-n convolution that allows convolution of different size tensors along a specific subset of their physical variables. We then applied our novel arbitrary mode-n convolution method to simulate three simple multidimensional Fourier Optics problems, i.e., free space propagation, diffraction by an aperture, and imaging using a thin lens. We simulated these problems using 1) full-sized tensors; 2) Tensor Tucker Decomposition; and 3) Tensor Train Decomposition. Our numerical results demonstrated that the Tensor Train approach is most efficient in terms of accuracy, storage requirement, and computation time.
    URI
    http://hdl.handle.net/1993/36773
    Collections
    • FGS - Electronic Theses and Practica [25525]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV