• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The symbolic defect sequence of edge ideals

    View/Open
    Thesis (723.3Kb)
    Date
    2022-08-23
    Author
    Reimer, Tessa
    Metadata
    Show full item record
    Abstract
    Symbolic powers of homogeneous ideals are challenging to study, even for square-free monomial ideals. In particular, the containments between symbolic and ordinary powers of ideals have been widely studied for decades. The symbolic defect provides a measure of the difference between symbolic and ordinary powers of ideals, introduced by Galetto, Geramita, Shin, and Van Tuyl in 2019. In this thesis, we investigate the symbolic defect sequence of edge ideals of nite simple graphs. We classify exactly which terms of this sequence are non-zero and which terms are equal to one. Further, we present formulae for both the rst and second non-zero terms. We describe a complete formula for the symbolic defect sequence of edge ideals of odd cycles, as well as a partial formula for the symbolic defect sequence of edge ideals of unicyclic graphs. We provide both lower and upper bounds on the terms that cannot be computed with this partial formula.
    URI
    http://hdl.handle.net/1993/36734
    Collections
    • FGS - Electronic Theses and Practica [25529]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV