• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of high resolution FTIR spectra from synchrotron sources using evolutionary algorithms

    Thumbnail
    View/Open
    Main article (1.233Mb)
    Date
    2015-04-17
    Author
    van Wijngaarden, Jennifer
    Desmond, Durell
    Leo Meerts, W.
    Metadata
    Show full item record
    Abstract
    Room temperature Fourier transform infrared spectra of the four-membered heterocycle trimethylene sulfide were collected with a resolution of 0.00096cm−1 using synchrotron radiation from the Canadian Light Source from 500 to 560cm−1. The in-plane ring deformation mode (ν13) at ∼529cm−1 exhibits dense rotational structure due to the presence of ring inversion tunneling and leads to a doubling of all transitions. Preliminary analysis of the experimental spectrum was pursued via traditional methods involving assignment of quantum numbers to individual transitions in order to conduct least squares fitting to determine the spectroscopic parameters. Following this approach, the assignment of 2358 transitions led to the experimental determination of an effective Hamiltonian. This model describes transitions in the P and R branches to J′=60 and Ka′=10 that connect the tunneling split ground and vibrationally excited states of the ν13 band although a small number of low intensity features remained unassigned. The use of evolutionary algorithms (EA) for automated assignment was explored in tandem and yielded a set of spectroscopic constants that re-create this complex experimental spectrum to a similar degree. The EA routine was also applied to the previously well-understood ring puckering vibration of another four-membered ring, azetidine (Zaporozan et al., 2010). This test provided further evidence of the robust nature of the EA method when applied to spectra for which the underlying physics is well understood.
    URI
    http://hdl.handle.net/1993/36074
    DOI
    10.1016/j.jms.2015.04.002
    Collections
    • Faculty of Science Scholarly Works [209]
    • University of Manitoba Scholarship [1981]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV