• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conformers of Allyl Isothiocyanate: A Combined Microwave Spectroscopy and Computational Study

    Thumbnail
    View/Open
    Main article (8.187Mb)
    Allyl-isothiocyanate-JPCA-SI.pdf (307.9Kb)
    Date
    2020-04-21
    Author
    Stitsky, Joseph
    Silva, Weslley G. D. P.
    Sun, Wenhao
    van Wijngaarden, Jennifer
    Metadata
    Show full item record
    Abstract
    The pure rotational spectrum of allyl isothiocyanate (CH2=CHCH2-NCS) was collected from 4-26 GHz using Fourier transform microwave (FTMW) spectroscopy. Its analysis revealed the presence of two conformers that arise due to variation in the CCCN and CCNC dihedral angles. The observed spectrum is consistent with the accompanying potential energy surfaces derived using quantum chemical calculations at the B3LYP-D3(BJ) and MP2 levels of theory. Together, this experimental and theoretical study unequivocally identifies a new conformer (I) as the global minimum geometry. The spectral assignment of this new conformer is verified by the observation of transitions consistent with its 34S, 13C and 15N isotopologues and with the characteristic 14N quadrupole hyperfine patterns. For conformer I, the substitution (rs) and effective ground state (r0) structures were derived and reveal contributions from a large amplitude motion in the CCNC angle. The remaining geometric parameters compare well with the equilibrium structure (re) from B3LYP-D3(BJ)/cc-pVQZ calculations. The derived CNC bond angle of 152.6(3)o for conformer I of allyl-NCS is found to be ~15o larger than that of allyl-NCO (137.5(4)o), which is in line with a change in the hybridization at nitrogen from an orbital with more ~sp character in allyl-NCS to ~sp1.5 in allyl-NCO as determined via natural bond orbital analyses.
    URI
    http://hdl.handle.net/1993/36040
    DOI
    10.1021/acs.jpca.0c02059
    Collections
    • Faculty of Science Scholarly Works [209]
    • University of Manitoba Scholarship [1981]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV