• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Validity of an algorithm to identify cardiovascular deaths from administrative health records: a multi-database population-based cohort study

    Thumbnail
    View/Open
    12913_2021_Article_6762.pdf (824.5Kb)
    Date
    2021-07-31
    Author
    Lix, Lisa M.
    Sobhan, Shamsia
    St-Jean, Audray
    Daigle, Jean-Marc
    Fisher, Anat
    Yu, Oriana H. Y.
    Dell’Aniello, Sophie
    Hu, Nianping
    Bugden, Shawn C.
    Shah, Baiju R.
    Ronksley, Paul E.
    Alessi-Severini, Silvia
    Douros, Antonios
    Ernst, Pierre
    Filion, Kristian B.
    Metadata
    Show full item record
    Abstract
    Abstract Background Cardiovascular death is a common outcome in population-based studies about new healthcare interventions or treatments, such as new prescription medications. Vital statistics registration systems are often the preferred source of information about cause-specific mortality because they capture verified information about the deceased, but they may not always be accessible for linkage with other sources of population-based data. We assessed the validity of an algorithm applied to administrative health records for identifying cardiovascular deaths in population-based data. Methods Administrative health records were from an existing multi-database cohort study about sodium-glucose cotransporter-2 (SGLT2) inhibitors, a new class of antidiabetic medications. Data were from 2013 to 2018 for five Canadian provinces (Alberta, British Columbia, Manitoba, Ontario, Quebec) and the United Kingdom (UK) Clinical Practice Research Datalink (CPRD). The cardiovascular mortality algorithm was based on in-hospital cardiovascular deaths identified from diagnosis codes and select out-of-hospital deaths. Sensitivity, specificity, and positive and negative predictive values (PPV, NPV) were calculated for the cardiovascular mortality algorithm using vital statistics registrations as the reference standard. Overall and stratified estimates and 95% confidence intervals (CIs) were computed; the latter were produced by site, location of death, sex, and age. Results The cohort included 20,607 individuals (58.3% male; 77.2% ≥70 years). When compared to vital statistics registrations, the cardiovascular mortality algorithm had overall sensitivity of 64.8% (95% CI 63.6, 66.0); site-specific estimates ranged from 54.8 to 87.3%. Overall specificity was 74.9% (95% CI 74.1, 75.6) and overall PPV was 54.5% (95% CI 53.7, 55.3), while site-specific PPV ranged from 33.9 to 72.8%. The cardiovascular mortality algorithm had sensitivity of 57.1% (95% CI 55.4, 58.8) for in-hospital deaths and 72.3% (95% CI 70.8, 73.9) for out-of-hospital deaths; specificity was 88.8% (95% CI 88.1, 89.5) for in-hospital deaths and 58.5% (95% CI 57.3, 59.7) for out-of-hospital deaths. Conclusions A cardiovascular mortality algorithm applied to administrative health records had moderate validity when compared to vital statistics data. Substantial variation existed across study sites representing different geographic locations and two healthcare systems. These variations may reflect different diagnostic coding practices and healthcare utilization patterns.
    URI
    https://doi.org/10.1186/s12913-021-06762-0
    http://hdl.handle.net/1993/35772
    Collections
    • Rady Faculty of Health Sciences Scholarly Works [1296]
    • University of Manitoba Scholarship [1978]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV