The collective mind: An experimental analysis of imitation and self-organization in humans

Abstract
I present an experimental paradigm to explore the interpersonal dynamics generating a collective mind. I hypothesized that collective organization among humans is based on dual interpersonal modes: (1) symmetrical and (2) anti-symmetrical. I specified these modes by detecting spatiotemporal patterns that embed cooperative agents in a three-dimensional (invariant) matrix. Within this spatiotemporal matrix, I found that the symmetrical mode is executed automatically and without guidance. Conversely, the anti-symmetrical mode required explicit direction and recruited attention for execution. I demonstrate that interpersonal symmetry stabilized group dynamics, enabled fast and efficient imitation that optimized information transmission, whereas anti-symmetrical imitation was comparatively slow, inefficient, and unstable. I determined that the anti-symmetrical mode spontaneously transitioned to the symmetrical mode under perturbations. Crucially, this renormalizing behaviour never transitioned from symmetrical to anti-symmetrical. This self-organizing group mechanism speaks to symmetry-breaking in cooperation dynamics. In the present work, spontaneous group choice mandated that agents align action-perception cycles in symmetrical space under internal or external perturbations. I provide examples to illustrate that this group behaviour manifests in invertebrates and vertebrates alike. I conclude by suggesting that inter-agent symmetry provides the social stability in which attention-driven interactions enable intrapersonal and interpersonal change. Future researchers may employ the methods I provide here to explore the emergent brain activity that gives rise to interpersonal symmetry-breaking and renormalization. Research in this area may offer insight into the patterns of neural activity (i.e., intrapersonal dynamics) that predict interpersonal symmetry-breaking, thus enabling the analysis of the neurological mechanisms underlying collective organization and social cognition.
Description
Keywords
Social cognition, Cooperative dynamics, Self-organization, Imitation, Interpersonal symmetry, Group renormalization
Citation
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5 (5th ed.). American Psychiatric Publishing.
Altshuler, Ramos, Núñez, Fernández, Batista-Leyva, & Noda. (2005). Symmetry Breaking in Escaping Ants. The American Naturalist, 166(6), 643-649. https://doi.org/10.2307/3491227
Ancel, A., Gilbert, C., Poulin, N., Beaulieu, M., & Thierry, B. (2015). New insights into the huddling dynamics of emperor penguins. Animal Behaviour, 110, 91 98. https://doi.org/10.1016/j.anbehav.2015.09.019
Ancel, A., Visser, H., & Handrich, Y. (2005). Energy saving in huddling penguins. Nature 385, 304 305. https://doi.org/10.1038/385304a0
Akbar, U., Ashizawa, T. (2015). Ataxia. Neurologic Clinics, 33(1), 225–248. https://doi.org/10.1016/j.ncl.2014.09.004
Ashby, W. R. (1947). Principles of the Self-Organizing Dynamic System. The Journal of General Psychology, 37(2), 125–128. https://doi.org/10.1080/00221309.1947.9918144
Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26, 2964–2970. https://doi:10.1523/JNEUROSCI.2921-05.2006
Badcock, P. B., Friston, K. J., & Ramstead, M. J. D. (2019b). The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Physics of Life Reviews, 31, 104121. https://doi.org/10.1016/j.plrev.2018.10.002
Bak, P., Tang, C., Wiesenfeld, K., (1988). Self-organized criticality. Physical review. A, General physics 38, 364-374. https://doi.org/10.1103/PhysRevA.38.364
Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/fnoise. Physical Review Letters, 59(4), 381–384. https://doi.org/10.1103/physrevlett.59.381
Bevc, C. A., Retrum, J. H., & Varda, D. M. (2015). New perspectives on the "silo effect": initial comparisons of network structures across public health collaboratives. American journal of public health, 105 Suppl 2(Suppl 2), S230–S235. https://doi.org/10.2105/AJPH.2014.302256
Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation, 13(11), 2409-2463. https://doi.org/10.1162/089976601753195969
Bisiach, E., Luzzatti, C., & Perani, D. (1979). Unilateral neglect, representational schema and consciousness. Brain, 102(3), 609-618. https://doi.org/10.1093/brain/102.3.609
Brainin, M., Seiser, A., & Matz, K. (2008). The mirror world of motor inhibition: The alien hand syndrome in chronic stroke. Journal of Neurology, Neurosurgery & Psychiatry, 79(3), 246-252. https://doi.org/10.1136/jnnp.2007.116046
Brass, M., Ruby, P., & Spengler, S. (2009). Inhibition of imitative behaviour and social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2359-2367. https://doi.org/10.1098/rstb.2009.0066
Brass, M., & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489-495. https://doi.org/10.1016/j.tics.2005.08.007
Buxbaum, L., Ferraro, M., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., Frassinetti, F., & Coslett, H. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749 756. https://doi.org/10.1212/01.wnl.0000113730.73031.f4
Catmur, C., Press, C., and Heyes, C. (2016). Mirror associations. In R. A. Murphy and R. C. Honey (eds.), The Wiley Handbook of the Cognitive Neuroscience of Learning. Hoboken, NJ: Wiley.
Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2369-2380. https://doi.org/10.1098/rstb.2009.0048
Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annual Review of Psychology, 55(1), 591-621. https://doi.org/10.1146/annurev.psych.55.090902.142015
Cook, R., Dickinson, A., and Heyes, C. (2012). Contextual modulation of mirror and countermirror sensorimotor associations. Journal of Experimental Psychology: General, 141(4), 774–787. https://doi.apa.org/doi/10.1037/a0027561
Cook, R., Press, C., Dickinson, A., and Heyes, C. (2010). Is the acquisition of automatic imitation sensitive to sensorimotor contingency? Journal of Experimental Psychology: Human Perception and Performance, 36, 840–852. https://psycnet.apa.org/doi/10.1037/a0019256
Cooper, R. P., Cook, R., Dickinson, A., and Heyes, C. (2013). Associative (not Hebbian) learning and the mirror neuron system. Neuroscience Letters, 540, 28–36. https://doi.org/10.1016/j.neulet.2012.10.002
Corcoran, A. J., & Hedrick, T. L. (2019). Compound-V formations in shorebird flocks. eLife, 8. https://doi.org/10.7554/elife.45071
Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology,98, 1415 1427. http://doi:10.1152/jn.00238.2007
Grossi, D., Di Cesare, G., & Trojano, L. (2004). Left on the right or Viceversa: A case of “Alternating” constructional allochiria. Cortex, 40(3), 511-518. https://doi.org/10.1016/s0010-9452(08)70143-6
Friston, K. (2012). A Free Energy Principle for Biological Systems. Entropy, 14(11), 2100-2121. https://doi.org/10.3390/e14112100
Friston, K., Breakspear, M., & Deco, G. (2012). Perception and self-organized instability. Frontiers in Computational Neuroscience, 6. https://doi.org/10.3389/fncom.2012.00044
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138. https://doi.org/doi:10.1038/nrn2787
Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16,1824–1829. http://doi:10.1016/j.cub.2006.07.072
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 1674 1684. http://doi:10.1016/j.neuroimage.2007.02.003
Gerum, R. C., Fabry, B., Metzner, C., Beaulieu, M., Ancel, A., & Zitterbart, D. P. (2013). The origin of traveling waves in an emperor penguin huddle. New Journal of Physics, 15(12), 125022. https://doi.org/10.1088/1367-2630/15/12/125022
Gilbert, C., Blanc, S., Le Maho, Y., & Ancel, A. (2008). Energy saving processes in huddling emperor penguins: from experiments to theory. The Journal of experimental biology, 211(Pt 1), 1–8. https://doi.org/10.1242/jeb.005785
Haken, H., Kelso, J. A., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347-356. https://doi.org/10.1007/bf00336922
Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self organization in physics, chemistry and biology. Springer Verlag.
Helbing, D., Farkas, I. & Vicsek, T. (2000) Simulating Dynamical Features of Escape Panic. Nature 407, 487–490. https://doi.org/10.1038/35035023
Hemelrijk, C., Reid, D., Hildenbrandt, H., & Padding, J. (2014). The increased efficiency of fish swimming in a school. Fish and Fisheries, 16(3), 511-521. https://doi.org/10.1111/faf.12072
Hesse, J., & Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Frontiers in Systems Neuroscience, 8, 1–14. https://doi.org/10.3389/fnsys.2014.00166
Heyes, C. (2018). Cognitive Gadgets: The Cultural Evolution of Thinking (Illustrated ed.). Belknap Press: An Imprint of Harvard University Press.
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463–483. https://doi.org/10.1037/a0022288
Heyes, C., & Ray, E. D. (2000). What is the significance of imitation in animals? Advances in the Study of Behavior, 29, 215–245. https://doi.org/10.1016/S0065-3454(08)60106-0
Hohwy, J. (2014). The Self-Evidencing Brain. Noûs, 50(2), 259-285. https://doi.org/10.1111/nous.12062
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949–960. https://doi.org/10.1521/soco.2009.27.6.949
Kelso, J. A. (2014). The Dynamic Brain in Action: Coordinative Structures, Criticality, and Coordination Dynamics. Criticality in Neural Systems, 67-104. https://doi.org/10.1002/9783527651009
Kelso, J. A. S. (2012). Multistability and metastability: understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 906–918. https://doi.org/10.1098/rstb.2011.0351
Kelso, J.A.S. (2009). Coordination Dynamics, in Encyclopedia of Complexity and Systems Science. R. A. Meyers. ed. Springer. Heidelberg, 1537 1564. https://doi.org/10.1007/978-3-642-27737-5_101-3.
Kelso, J. A. S. (2001). Metastable Coordination Dynamics of Brain and Behavior. The Brain & Neural Networks, 8(4), 125–130. https://doi.org/10.3902/jnns.8.125
Kelso, J. A. S. (2000a). “Principles of dynamic pattern formation and change for a science of human behavior,” in Developmental Science and the Holistic Approach: Proceedings of a conference at Wiks Castle and the Nobel Institute, eds L. Bergman, R. B. Cairns, L. G. Nilsson, and L. Nystedt (Stockholm; Mahwah, NJ: Erlbaum), 63–83.
Kelso, J. A. S. (2000b). “How the brain changes its mind: Metastable Coordination Dynamics,” in The Emergence of Mind: Proceedings of the International Symposium at the Fondazione Carl Erba Foundation (Italy; Milano), 1–18.
Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 246(6), R1000-R1004. https://doi.org/10.1152/ajpregu.1984.246.6.r1000
Kerkhoff, G. (2001). Spatial hemineglect in humans. Progress in Neurobiology, 63(1), 1-27. https://doi.org/10.1016/s0301-0082(00)00028-9
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2010). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 10153 10159. http://doi:10.1523/JNEUROSCI.2668-09.2009
Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: autonomy, active inference and the free energy principle. Journal of The Royal Society Interface, 15(138), 20170792. https://doi.org/10.1098/rsif.2017.0792
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719. https://doi.org/10.1016/j.tins.2004.10.007
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—A model and taxonomy. Psychological Review, 97, 253–270. https://doi.org/10.1037/0033-295X.97.2.253
Meltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model. Early Development and Parenting, 6(3-4), 179-192. https://doi.org/10.1002/(sici)1099-0917(199709/12)6:3/43.0.co;2-r
Nishikawa, T. (2001). Conflict of intentions due to callosal disconnection. Journal of Neurology, Neurosurgery & Psychiatry, 71(4), 462-471. https://doi.org/10.1136/jnnp.71.4.462
O'Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus, 1(3), 230-235. https://doi.org/10.1002/hipo.450010303
O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425-428. https://doi.org/10.1038/381425a0
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171 175. https://doi.org/10.1016/0006-8993(71)90358-1
O'Keefe, J., Nadel, L., & Regents Professor of Psychology Lynn Nadel. (1978). The hippocampus as a cognitive map. Oxford University Press, USA.
Ovchinnikov, I. (2016). Introduction to Supersymmetric theory of stochastics. Entropy, 18(4), 108. https://doi.org/10.3390/e18040108
Palacios, E. R., Razi, A., Parr, T., Kirchhoff, M., & Friston, K. (2020). On Markov blankets and hierarchical self-organisation. Journal of Theoretical Biology, 486, 110089. https://doi.org/10.1016/j.jtbi.2019.110089
Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510–532. https://doi.org/10.1037/0033-2909.114.3.510
Saloma, C., Perez, G. J., Tapang, G., Lim, M., & Palmes-Saloma, C. (2003). Self-organized queuing and scale-free behavior in real escape panic. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 11947–11952. https://doi.org/10.1073/pnas.2031912100
Schmidt, A. (2016, May 26). Groupthink. Encyclopedia Britannica. https://www.britannica.com/science/groupthink
Schwabl, F. (2002). Phase transitions, Scale invariance, Renormalization Group Theory, and Percolation. Statistical Mechanics, 331-408. https://doi.org/10.1007/3-540-36217-7_7
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal. 27 (3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174-176. https://doi.org/10.1037/h0027448
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662. https://doi.org/10.1037/h0054651
Tarr, B., Launay, J., Cohen, E., and Dunbar, R. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11(10), 20150767. https://doi.org/10.1098/rsbl.2015.0767
Tschacher, W., & Haken, H. (2007). Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation. New Ideas in Psychology, 25(1), 1–15. https://doi.org/10.1016/j.newideapsych.2006.09.002
Tunçgenç, B., & Cohen, E. (2016). “Movement synchrony forges social bonds across group divides”: Corrigendum. Frontiers in Psychology, 7, Article 1737. https://doi.org/10.3389/fpsyg.2016.00782
Stensola, T., & Moser, E. I. (2016). Grid cells and spatial maps in Entorhinal cortex and hippocampus. Research and Perspectives in Neurosciences, 59 80. https://doi.org/10.1007/978-3-319-28802-4_5
Vallar, G. (1998). Spatial hemineglect in humans. Trends in Cognitive Sciences, 2(3), 87 97. https://doi.org/10.1016/s1364-6613(98)01145-0
Veissière, S. P. L., Constant, A., Ramstead, M. J. D., Friston, K. J., & Kirmayer, L. J. (2019). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences 43, 1–75. https://doi.org/10.1017/s0140525x19001213
Waters, A., Blanchette, F., & Kim, A. D. (2012). Modeling huddling penguins. PLoS ONE, 7(11), e50277. https://doi.org/10.1371/journal.pone.0050277
Wiltermuth, S. S., and Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20(1), 1–5. https://doi.org/10.1111%2Fj.1467-9280.2008.02253.x
Zitterbart, D. P., Wienecke, B., Butler, J. P., & Fabry, B. (2011). Coordinated movements prevent jamming in an emperor penguin huddle. PLoS ONE, 6(6), e20260. https://doi.org/10.1371/journal.pone.0020260