• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid cascaded modular multilevel converters for HVDC transmission

    Thumbnail
    View/Open
    Main article (5.023Mb)
    Date
    2019-07-22
    Author
    Shi, Xianghua
    Metadata
    Show full item record
    Abstract
    This thesis presents a comprehensive study of a class of modular multilevel converters (MMCs) namely hybrid cascaded MMCs. These converters have topological dc-fault blocking capability and are suitable for large-scale, long-distance high-voltage direct current (HVDC) transmission. This thesis investigates an existing hybrid cascaded MMC (HC-MMC) and novel variations thereof (mixed-SM HC-MMC) with a multi-pronged research approach based upon mathematical analyses, detailed computer simulations, and where possible experimental verifications. Several methods are proposed for control and operation of the converter under normal and faulted conditions with a view to (i) enable regulation of submodule capacitor voltages in the phase limb with reduced harmonics and the ability of extending linear modulation range, (ii) ride through balanced and unbalanced ac faults with balanced phase currents and efficient ac-fault recovery, and (iii) successfully ride through dc faults with prompt isolation of the ac and dc sides and rapid decay of the dc fault current. These methods are extensively analyzed using detailed electromagnetic transient simulation and experimental work where possible. Converter losses and efficiency maps are also quantified using detailed computer modeling methods to evaluate the benefits of the existing and proposed HC-MMCs. Compared with the original HC-MMC, the proposed mixed-SM HC-MMC has superior performance in terms of extended linear modulation range, system efficiency, and dc-fault clearing performance. The thesis also formulates the design guidelines of SM capacitor sizing considering submodule redundancy and different control modes. Extensive analytical, simulation-based, and experimental measurements are provided to confirm the validity and efficacy of the developed guidelines.
    URI
    http://hdl.handle.net/1993/34045
    Collections
    • FGS - Electronic Theses and Practica [25629]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV