• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Saliency ranking using deep learning

    Thumbnail
    View/Open
    Thesis (109.5Mb)
    Date
    2018
    Author
    Kalash, Mahmoud
    Metadata
    Show full item record
    Abstract
    Salient object detection is a problem that has been considered in detail and many solutions proposed. In this thesis, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried which implies a relative rank exists on salient objects. In this thesis, we solve this more general problem that considers relative rank. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement to address both of the saliency ranking and subitizing tasks. We also present methods for deriving suitable ranked salient object instances to generate a large scale dataset for saliency ranking, along with metrics suitable to measuring success in a relative object saliency landscape. Our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).
    URI
    http://hdl.handle.net/1993/33368
    Collections
    • FGS - Electronic Theses and Practica [25525]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV